
ED 038 313

AUTHOR
TITLE

INSTITUTION
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

SE 008 276

McCormick, William T., Jr.; And Others
Identification cf Data Structures and Relationships
by Matrix Reordering Techniques.
Institute for Defense Analysis, Arlington, Va.
RP-512
Dec 69
141p.

EDRS Price MF-$0.75 HC-$7.15
*Algorithms, *Data Analysis, Data Processing,
Mathematical Applications, Mathematical Models,
*Mathematics, *Research Methodology, *Statistical
Analysis

ABSTRACT
Presented are the results of a study conducted to

develop algorithms for ordering and organizing data that can be
presented in a two-dimensional matrix form. The purpose of the work
was to develop methods to extract latent data patterns, grouping, and
structural relationships which are not apparent from the raw matrix
data. The algorithms developed are (1) Moment Ordering Algorithm, (2)

Moment Compression Algorithm, and (3) Bond Energy Algorithm. They are
applicable to a variety of problems involving multivariate data
analysis. (RS)



00
C
C

U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE

OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATIOU ORIGINATING IT, POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION

POSITION OR POLICY.

RESEARCH PAPER, P-512

,40

1E1

IDENTIFICATION OF DATA STRUCTURES
AND RELATIONSHIPS BY MATRIX REORDERING TECHNIQUES

DA

William T. McCormick, Jr.
Stephen B. Deutsch

John J. Martin
Paul 3. Schweitzer

December 1969

INSTITUTE FOR DEFE
SYSTEMS EVALUATIOA.

IDA
INSTITUTE FOR DEFENSE ANALYSES
400 ARMY-NAVY DRIVE
ARLINGTON, VIRGINIA 22202

IDA Log No. HQ 69-10829
Copy 78 of 150 copie



The information contained in this publication was developed under the
IDA's independent research program. Its publication by IDA does not
imply endorsement by the Department of Defense or other Government
agency nor should the contents be construed as reflecting the official
position of any U.S. Government office.

3726-0152-3M ,

'rot



RESEARCH PAPER P-512

I

IDENTIFICATION OF DATA STRUCTURES
AND RELATIONSHIPS BY MATRIX REORDERING TECHNIQUES

William T. McCormick, Jr.
Stephen B. Deutsch

John J. Martin
Paul J. Schweitzer

December 1969

I DA
INSTITUTE FOR DEFENSE ANALYSES

SYSTEMS EVALUATION DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202



FOREWORD

This paper presents the results of a study undertaken

to develop methods for ordering and organizing technical,

social, economic and other data that can be presented in array

form. The study leading to the development of this report

was conducted as independent research at the Institute for

Defense Analyses. The theory and development of the

algorithms described in this paper are the work of members of

the Systems Evaluation Division.

iii



ABSTRACT

This research paper presents the results of a study conducted to develop algorithms for

ordering and organizing data that can be presented in a two-dimensional matrix form. The only

restriction imposed on the analysis was that the rows and columns of the raw input data
matrices could only be reordered, thus preventing the creation of artificial coefficients or loss

of essential input information. The purpose of this work was to develop methods to extract

latent data patterns, groupings, and structural relationships which are not, in general, apparent

from the raw matrix data.

Three distinct algorithms were developed and are presented in detail within the report.

They have been applied to a variety of examples from the social and technical sciences which

will also be discussed. The first method developed, the Moment Ordering Algorithm, has

proven to be an effective technique for uncovering and displaying a dominant univariate
relationship between the two sets of entities that lie along the vertical and horizontal axes of a

matrix. The second method, the Moment Compression Algorithm, is designed to factor

decomposible matricf by proper reordering but was not applied extensively because of its

complex and time-consuming solution. The last method developed, the Bond Energy
Algorithm, was found to be applicable to a broader class of problems than the first two

methods and is able to efficiently organize, group, and interrelate data of considerably more

complex structure.

It will be shown that the techniques developed in this work are applicable to a variety

of problems involving multivariate data analysis and, when used, can often significantly

augment the level of understanding and comprehension of complicated multivariate

relationships.



CONTENTS

PART I: GENERAL DESCRIPTION

I. INTRODUCTION

II. DESCRIPTION AND OBJECTIVES OF THE THREE ALGORITHMS

1

3

5

A. The Bond Energy Algorithm 5

B. The Moment Ordering Algorithm 8

C. The Moment Compression Algorithm 9

D. Contrasts Among the Three Algorithms 10

III. CONCLUSIONS 13

PART II: DETAILED DESCRIPTIONS AND APPLICATIONS 15

I. THE BOND ENERGY ALGORITHM 17

A. Motivation 17

B. The Measure of Effectiveness 18

C. The Solution: Maximization of the ME 21

D. Operation of the Algorithm 24
E. Applications 26

F. Examples 27

II. THE MOMENT ORDERING ALGORITHM 49
A. Introduction 49
B. The Algorithm 49
C. Results 55

III. THE MOMENT COMPRESSION ALGORITHM 63

A. Introduction 63

B. Measure of Effectiveness for Moment Compression 65

C. Gradient Algorithm for Approximate ME-Optimization 66

D. Computational Results 68

REFERENCES 75

vii



APPENDIX A

APPENDIX B

APPENDIXES

Formulation of the Bond Energy ME Optimization as
Two Quadratic Assignment Problems

Proof that the Bond Energy Suboptimal Algorithm Will
Produce Block Factored Form if it is Possible to do so by
Row and Column Permutations

APPENDIX C Proof that the Moment Compression Algorithm Will
Produce Block Factored Form if it is Possible to do so
by Row and Column Permutations

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

The Bond Energy Computer Program

The Moment Ordering Computer Program

The Moment Compression Computer Program

Discussion of Measures of Effectiveness

A Measure of Effectiveness for the Moment Ordering Algorithm

79

83

89

95

107

123

139

145

Multiple Solutions to the Moment Ordering Algorithm for a
Sample 3 x .? Array 149

viii



FIGURES

1. Representation of Bond Energy ME 6

2. Illustration of the Sensitivity of the Bond Energy ME 7

3. An Example of the Moment Ordering Algorithm 9

4. Matrix With Perfect Block Form 10

5. Relationship Matrix Showing 4 Unique Groups 17

6. Relationship Matrix. With Block-Checkerboard Form 18

7. Initial Non-Binary Similarity Matrix 23

8. Reordered Non-Binary Similarity Matrix 23

9. Initial Binary Object-Attribute Matrix 27

10. Initial Fractional Object Similarity Matrix 28

11. Initial Binary Similarity Matrix 28

12. Reordered Binary Object-Attribute Matrix 29

13. Reordered Fractional Object Similarity Matrix 29

14. Reordered Binary Similarity Matrix 30

15. Initial Matrix of Marketing Techniques and Applications 31

16. Reordered Matrix of Marketing Techniques and Applications 33

17. Dependency Matrix for Airport Variables 39

18. Reordered Dependency Matrix for Maximum Clumpiness 39

19. Suggested Subproblems With Coordination Links 40

20. Reordered (Hindi) Consonant Error Matrix 42

21. Initial Inter-City Inverse Distance Matrix 44

22. Reordered Inverse Distance Matrix 44

23. Geographical Illustration of City Clusters 45

24. Operation of the Algorithm on a Small Array 52

25. Illustration of Multiple Solutions 53

26. Illustration of Cycling Phenomenon 54

27. Initial Word Relationship Array, Matrix A-1 69

28. Reordered Word Relationship Arrays 70

29. Initial Similarity Matrix B-1 72

30. Reordered Similarity Matrices 74

C-1 Sample Matrix
92

D-1 Flow Chart for Sequential Row (or Column) Selection and. Laydown

for Bond Energy Algorithm
98

E-1 Flow Chart for Moment Ordering Algorithm 110

E -2 Sample Data Deck for Card Input Version of Moment Ordering Algorithm 111

F-1 Flow Chart for Moment Compression Algorithm 127

I-1 Experimental 3 by 3 Array 151

1-2 Multiplicity of Solutions for a Small Array 152

ix



TABLES

1. Bond Energy Algorithm Computation Time 25

2. Frequency Distribution of ME 26
3. Airport Variables 37
4. Senate Roll Call Votes Included in Analysis 56
5. Arrays Used in Senate Vote Pattern Analysis 57
6. Results of Vote Pattern Analysis 58

7. Raw Pottery Percentages 59
8. Agreement Coefficients 60
9. Reordered Agreement Coefficients 61



PART I: GENERAL DESCRIPTION

11



I. INTRODUCTION

Since the introduction of the large digital computers, methods of multivariate analysis'

are being developed that utilize more effectively the computational resources and character-

istics of the computer than some of the more conventional and established statistical tech-

niques. These new methods are being employed because it is now possible to undertake data

analysis problems in considerably greater detail than was previously feasible. A class of
techniques that is able to account for detailed individual relationships as well as macroscopic

data structure is exemplified by the cluster-seeking2 methods. Ball (Ref. 1) has accurately

pointed out that many classical statistical techniques depend heavily on statistical quantities

estimated from the data and that this "averaging" from the data can sometimes lead to

erroneous conclusions. This is simply because microscopic variations in the data cannot, in
general, be detected from the statistical quantities estimated with the result that small but

significant information can be overwhelmed and even lost under the pressure of larger

statistical trends. Furthermore, many of these classical techniques such as principal component

analysis (Ref. 28) or factor analysis (Ref. 28) implicitly assume data distributions that are not

always present. Thus, it appears that there is a definite need for better direct analysis

techniques so that it is not necessary to completely rely on functions of data or on
assumptions regarding their distribution.

This paper presents three new direct data analysis techniques that were developed at

the Institute for Defense Analyses. One of the algorithms, the Bond Energy Algorithm, shares

a few of the same objectives as some of the other cluster-seeking techniques (Refs. 2 through

20) but has several important differences and advantages. The Moment Ordering Algorithm has

as its principal goal the discovery of a single dominant relationship in the data, while the
Moment Compression Algorithm attempts to factor the data into separable pieces or clusters.

Two important characteristics that all three of these methods share is that they operate
directly on the non-negative raw input matrix data and that they reorganize and reorder the

matrix data by performing row and column permutations in order to reveal obscure and

I. Multivariate Analysis includes such mathematical techniques as Regression Analysis, Factor Analysis, Principal

Component Analysis, Canonical Analysis, Cluster Analysis, etc.
2. Cluster Seeking techniques are those data analysis methods which seek to identify groups of similar entities.

3



potentially informative data patterns. The output of all these algorithms, then, is a new data
matrix with its resulting new ordering.

In Chapter II, the most important features and characteristics of each of the three
algorithms will be briefly described. Then, in Chapter III, the major results and conclusions of
this study will be presented. Part II of this paper contains a detailed description of the theory
and development of the three algorithms along with a number of pertinent examples which
illustrate the favorable characteristics and general applicability of these methods.



II. DESCRIPTION AND OBJECTIVES OF THE THREE ALGORITHMS

In this chapter the three data ordering algorithms are briefly described and their

objectives are compared. More detailed description of the theory and development of these

algorithms, along with a number of applications, will be found in Part II.

A. THE BOND ENERGY ALGORITHM1

The Bond Energy Algorithm2 is capable of identifying and displaying natural groups

and clusters that occur in complex data matrices. Moreover, the algorithm is able to uncover

and display the associations and interrelationships of these groups with one another. These
tasks are accomplished through the use of a numerical measure of how clustered or clumpy3 a

matrix is. The proposed measure of effectiveness (ME) attains its maximum value when the

matrix assumes a very clumpy or aggregated form. It has been found that the structures and

relationships existing in data matrices more clearly exhibit themselves when the matrices are

presented in more aggregated forms corresponding to larger MEs.

The ME is defined as follows. Assume that the matrix of relationships (or transactions,

flow, etc.) has dimension M by N with non-negative elements aij. The quantity aii is defined

as4
1

a.. =
1

[a. +
,

+ ai _ + aij + + ai

From Fig. 1 it can be seen that aij is just one half the sum of the horizontal and vertical

nearest neighbors of aij. The unnormalized ME can now be defined as

ME = E aii aii .

all ij
The ME clearly is equal to the sum of all the vertical and horizontal bond strengths in the

matrix where the strength of a bond between two horizontally or vertically adjacent elements

1. The theory and development of this algorithm are due to Dr. W.T. McC,rmick, Jr.
2. This algorithm is so called because its measure of effectiveness involves products of nearest neighbor matrix

elements that may be likened to bond strengths.
3. A clumpy matrix is one whose large elements lie near other large elements, forming aggregates called clumps.
4. With the convention a = a. = a.0j 40 1,N+1 = aM+1,j

= 0.

5



11-12-69-3

a. .
i -jg,

a. .

,J

a.
+1, j

a.

FIGURE 1. Representation of Bond Energy ME

is defined as the product of the elements. A slightly more general form of this ME is presented
in the more detailed description in Part II of this paper.

To obtain maximum "dumpiness" of the matrix it is necessary to maximize the ME
over all row permutations and column permutations of the matrix, i.e.,

max

all row perm /ME = E au
& col perm all ij

This problem can be formulated equivalently as two quadratic assignment problems' and its
optimal solution can be determined. However, this rigorous solution is quite time consuming
so a suboptimal algorithm has been developed. The suboptimal algorithm is a sequential
selection procedure that has proven to be efficient and rapid. The description and details of
this technique are contained in Chapter I of Part II.

A simple example will illustrate the sensitivity of the ME and the utility of a

rearrangement of the matrix data. Suppose we haven, a symmetric matrix showing certain
associations or relationships between entities A, B, C and D. The initial relationship matrix is

shown in Fig. 2a, where the ones in the ijth elements of the matrix represent the existence of
relationships between entities i and j and the zeros indicate the absence of relationships. It is
clear from the definition of the ME and the observation that there are no bonds, that the ME =
0 for the matrix in Fig. 2a. Figures 2b, 2c, 2d, and 2e show progressively greater levels of
dumpiness and their MEs are 2, 4, 6, and 8, respectively. Application of the Bond Energy
Algorithm produces the ordering shown hi Fig. 2e, where it is clear that two clusters have been

5. See Appendix A.

6



-,

ABCD
A 1 0 1 0
B 0 1 0 1

C 1 0 1 0
D O 1 0 1

FIGURE 2a. ME=0

ABCD
A 1 0 1 0
B 0 1 0 1

D 0 1 0 1

C 1 0 1 0

FIGURE 2b. ME=2

ABCD
A 1 0 1 0
C 1 0 1 0
B 0 1 0 1

D 0 1 0 1

FIGURE 2c. ME=4

ACBD
A 1 1 0 0
B 0 0 1 1

D 0 0 1 1

C 1 1 0 0

FIGURE 2d. ME=6

ACBD
A 1 1 0 0

C 1 1 0 0
B 0 0 1 1

D 0 0 1 1

FIGURE 2e. ME-8

11-12-69-4

FIGURE 2. lilustraticn of the Sensitivity of the Bond Energy ME

uncovered and in fact the entities have been factored into two unrelated and distinct groups
(i.e., A, C and B, D).

This simple example gives an indication of how the Bond Energy Algorithm can
produce clearer and deeper understanding of the matrix data by simple rearrangement.

7



B. THE MOMENT ORDERING ALGORITHM6

The purpose of the Moment Ordering Algorithm is to identify the single dominant
relationship in an array of data, and to reorder the rows and columns of the array to produce a
ranking under this dominant relationship. That is to say, the algorithm finds the principal axis7
for the data, and arranges both the rows and the columns according to the implicit underlying
variable corresponding to the axis. The concept may be made clearer by considering the two
examples discussed in Part II. One example involves the distribution of pottery types in a
group of archeological sites. The underlying variable is the age of the site, and the algorithm
therefore produces a chronological ordering of the sites. The second example involves the
voting patterns of a group of Senators. The algorithm determines that the underlying variable
is the degree of liberalism/conservatism, and therefore orders the Senators (and the bills voted
upon by them) along a liberal/conservative spectrum.

The underlying idea behind the algorithm is the fact that if two rows are very similar to
each other their mean row moments should be close to each other in value. The mean row
moment xi of the ith row is defined as

xi =
N

j = 1
a..

where a,j is the ijth element in the array. Similarly, if two columns are closely related, their
mean column moments, defined analogously, should be close in value. The algorithm, then, is
an attempt to use these moments to rearrange the array so that rows (or columns) are as near
as possible to other similar rows (or columns).

The algorithm begins by computing the row moments for the array in its initial state,
and placing the rows in ascending order of their moments. The column moments are then
calculated, and the columns reordered according to their moments. This reordering, however,
changes the values of the row moments. The row moments are therefore recalculated and the
rows reordered. The procedure is continued, alternating between row and column reorderings,
until an ordering is reached in which both the rows and columns are arranged in order of their
moments. Such a stable state is considered a solution. The principal output of the algorithm is
then the one-dimensional ordering of the entities on the array axes on the basis of whatever
dominant relationship may exist in the data.

6. The initial idea for this algorithm and for this research paper is due to Dr. John J. Martin. The algorithm was
improved and developed by Dr. Stephen B. Deutsch.

7. A principal axis may be thought of as an "underlying variable" by means of which the explicit variables can be
listed in a one-dimensional ordering.

8



As an example of how the Moment Ordering Algorithm operates on a sample data

array, consider the relationship matrices given in Fig. 3. When the algorithm is applied to the

data array of Fig. 3a, the new array shown in Fig. 3b is obtained. Similar rows are now

adjacent to each other, and the overall ordering of the rows reflects their placement along the

principal axis of the array. Note the concentration of the non-zero elements along the main

diagonal of the new array. This concentration is a property of solutions found by the

algorithm. The details of this method and some examples which have been successfully

handled are presented in Part II.

ABCDE
A 1 1 0 0 1

B 1 1 0 1 0

C 0 0 1 0 1

D 0 1 0 1 0

E 1 0 1 0 1

FIGURE 3a.

DB AEC
D 1 1 0 0 0

B 1 1 1 0 0

A 0 1 1 1 0

E 0 0 1 1 1

C 0 0 0 1 1

FIGURE 3b.

11-12-69-5

FIGURE 3. An Example of the Moment Ordering Algorithm

C. THE MOMENT COMPRESSION ALGORITHM8

The Moment Compression Algorithm is designed to identify natural groups and clusters

of entities by factoring the data relationship matrix into a number of pieces. The algorithm

accomplishes this by finding the data ordering which minimizes a specific ME. The ME used by

the Moment Compression Algorithm is just the sum of all the row and column second

moments about their respective means, that is

ME=
M

i= 1
ri +

N

= 1
c.
.1'

where ri and cj are the ith row moment and jth column moment. The minimization of this ME

over all row and column permutations has the effect of compressing the data in such a way as

to force the non-zero matrix elements toward a block-factored form.

8. The theory and development of this algorithm are due to Dr. Paul J. Schweitzer.

9



This ME was devised because of the observation that the rows and columns of a matrix

in perfect block-factored form, when contrasted with the same matrix after row or column

permutations, have the smallest sum of the moments of inertia about their means. That is, any
row or column permutation of a matrix in perfect block form will "expand" a block and make

it less dense, thereby increasing the matrix's total moment of inertia. A matrix in perfect

block-factored form is shown in Fig. 4.

11-12-69-6

FIGURE 4. Matrix with Perfect Block Form

The problem of ME maximization can be posed as two quadratic assignment problems;

however, in practice, it has been solved sub-optimally by an iterative gradient procedure

involving linear assignment problems.

When the Moment Compression Algorithm is applied to any of the matrix orderings of

Fig. 2 the resulting ordering is the completely block-factored form shown in Fig. 2e. In this

special case when the matrix is completely block factorable, the Bond Energy and the Moment

Compression Algorithms will both produce block-factored form.

D. CONTRASTS AMONG THE THREE ALGORITHMS

In order to understand better exactly how the three algorithms differ, it is useful to

compare their objectives and their computational methods.

The single objective of the Moment Compression Algorithm is to identify groups or

clusters by rearrangement of the matrix data. In addition to sharing this objective the Bond

Energy Algorithm has the additional objective of determining whether and in what manner

these groups are related to one another.9 Computationally, the MEs of the two algorithms

9. See discussion before Fig. 6.

10



differ substantially in that the Bond Energy ME depends on nearest-neighbor interactions
while the Moment Compression ME is completely global. A consequence of this difference is
that the Bond Energy ME more adequately describes the topological properties of dumpiness,
denseness and connectedness. Another consequence is the greater computational ease in
optimizing the Bond Energy ME by use of a rapid sequential selection algorithm which
exploits its nearest neighbor dependency.

The Moment Ordering Algorithm differs markedly from both of the previous data
ordering methods. Instead of attempting to identify groups, clusters or group interrelation-
ships, the main objective of the Moment Ordering Algorithm is to produce a one-dimensional
ordering of entities along the axes of the matrix. It accomplished this by finding a dominant
variable or principal axis along which these entities can be ordered. Computationally, like the
Moment Compression Algorithm, the Moment Ordering Algorithm employs moments which
are global matrix measures, and thus it is not as sensitive to local details as the Bond Energy
Algorithm. Its principal computational difference, though, from the Bond Energy and the
Moment Compression Algorithms is that it is a completely heuristic iterative technique that
does not attempt to optimize any measure of effectiveness.

11



III. CONCLUSIONS

The following statements are the general assessments and conclusions regarding the
applicability, overall usefulness, and efficiency of the three algorithms developed for direct
analysis of multivariate systems by matrix reordering.

The Bond Energy Algorithm proved to be the most generally useful and
versatile of the three algorithms for treating certain problems of multivariate
analysis. It is capable not only of classifying and clustering data but also of
successfully identifying areas of interrelationships that exist among these
clusters. It has been found to be an efficient and general approach to problems
involving clusters and group structures.

The Moment Ordering Algorithm is an efficient technique for uncovering and
displaying a univariate relationship inherent in the data. That is, it is a fast and
direct method for uncovering the principal axis of a data structure. The
efficiency of the algorithm was found to be in direct proportion to its ultimate
success in identifying a principal axis. The primary utility of this algorithm is in

determining a good one-dimensional ordering of the data rather than in
uncovering clusters or group interrelationships in the data.

The Moment Compression Algorithm is successful at identifying clusters and
groups inherent in the data. Both it and the Bond Energy Algorithm will put a
matrix into block form, if this is possible. However, the Moment Compression
Algorithm is slower and therefore less useful for large problems. Unlike the
Bond Energy Algorithm, the Moment Compression Algorithm cannot handle
the case of block-checkerboard' matrices arising from multilateral group
relationships. Consequently the Moment Compression Algorithm is considered
inferior to the Bond Energy Algorithm both with regard to computational
speed and versatility of its measure of effectiveness.

1. See Fig. 6.

13



PART II: DETAILED DESCRIPTIONS AND APPLICATIONS

15



I. THE BOND ENERGY ALGORITHM

A. MOTIVATION

The motivation for the development of the Bond Energy Algorithm was to be able to
treat a broader class of problems than that normally found in cluster analysis applications. In
addition, it was desired to operate directly on and manipulate the original data without
creating or losing information. The object is not only to classify and group similar entities but
also to determine how and by what means these groups are interrelated. This can be illustrated
by considering a symmetric binary (-1) relationship matrix between N entities. If the N
entities can be separated into, say, four unique groups (unique meaning that the entities in one
group are related only among themselves and not with any entities outside their own group),

then many of the techniques of cluster analysis are applicable. In this case it is possible to
reorder the rows and columns of the input data matrix to obtain the form given in Fig. 5.

ENTITY
ENTITY 2

ENTITY N
11-12-69-7

FIGURE 5. Relationship Matrix Showing 4 Unique Groups

However, if the en cities are not completely factorable into unique groups then it is often
desirable to identify not only the principal groups but also their significant areas of relation-

ship. In other words, it might be desirable to rearrange the data matrix to obtain a checker-
board pattern if it is possible. This type of pattern is shown in Fig. 6, where the off-diagonal

blocks of large Xs represent data clumps containing a sizable percentage of non-zero entries,

thus indicating partial or total intergroup relationships.

17



ENTITY 1
ENTITY 2

ENTITY N
11-12-69-8

FIGURE 6. Relationship Matrix with Block-Checkerboard Form

The essential question is, given a matrix where the data are presented in an arbitrary manner,

how can the rows and columns of a matrix be simply rearranged to obtain as "clumpy" a

matrix form as possible.

B. THE MEASURE OF EFFECTIVENESS

1. Definition and Interpretations

In order to analytically determine the "dumpiness" of a particular matrix, it was

necessary to develop some measure of effectiveness (ME) 1 of how any subsequently proposed

algorithm would progress. This ME must be sensitive to and depend on local dumpiness while

also characterizing the dumpiness of the entire matrix. The essential idea behind the ME,

which fulfills this requirement, came from likening the situation to that of the saturation of

bonds in the nucleus of an atom. That is, when the nucleons are clumped together there is

total bond saturation in the interior of the nucleus while the bonds of the nucleons near the

surface are unsaturated. The intent was to find an ME which when maximized, resulted in as

few unattached or unbonded matrix elements as possible. The bond strength between two

adjacent matrix elements is defined as the 1 /kth power of the product of the matrix elements.

Maximization of the ME will maximize the sum of all the bond strengths, and therefore clump

together the larger non-zero matrix elements. Another physical phenomenon that may be

likened to this situation is that of water beads on a glass. The beads tend to aggregate into

1. A more complete discussion of MEs may be found in Appendix G.

18



larger clumps in order to minimize the surface energy. The ME can be defined, then, as just the

sum of all the bond strengths in a matrix. Thus

MEk = E aYktk
a..

u
all i,j

where2

k ij+1j 2
[ al/k a.1/k al/k al lc

1+1,j 1-1j

and k is a weighting constant, which is usually set equal to 2. The ME may be interpreted

mathematically as the sum of the scalar products (or projections on one another) of all the

contiguous row vectors3 plus the sum of the scalar products of all of the contiguous column

vectors.3

2. Normalization of the ME

The ME defined above can be normalized so that its value varies between 0 and 1. This

normalized measure of effectiveness (NME) is defined as

where

NME = -11 E a.1 ik
kk S . a..

Jall ij

and 0 < NMEk < 1

S is the normalization constant defined as

S = 2 E a.2/k. .

all i,j

S can be interpreted mathematically as the sum of the squares of the L2 norms4 of all the row

and column vectors. The advantage in having a normalized ME is that it is easier to determine

how much improvement in the dumpiness of a matrix has been achieved since it is a measure

2. Again, ao = a1,0 = am+1 = atr+1 = 0. \

.th ail, ,ate :
A
th

3. The row vector is comprised of the elements , , in the row of the matrix. A column vector

is defined analogously.

4. The L2 vector norm is defined as

1142 =
= 1

where M is the dimension of the vector space. The fact that the NMEk is properly normalized follows from a basic inequality

vi

(> 12for a normed space la> 12 + lb >2( a>, ).
19



of the amount of bond saturation. For instance, if the NME of the reordered data matrix

equals 0.6, whereas the NME of the initial data matrix equals 0.2, then it can be concluded

that there does exist a good deal of inherent group structure and interrelationship that was not

initially evident. Moreover, the final NME gives an absolute measure of the existence of the

clusters that we have sought to uncover.

3. Advantages of the ME

The ME proposed above has some very important theoretical and coniputational

advantages which will be enumerated here.

The NME can be used for matrices of any size or shape. In addition, ,ymmetry

of the matrix is not required. The only restriction is that the matrix elements

be non-negative, real numbers.

Since the vertical (horizontal) bonds are unaffected by interchange of the

columns (rows), the ME decomposes into two parts; one (sum of the vertical

bonds) dependent only on row permutations, and the other (sum of the

horizontal bonds) dependent only on column permutations. Consequently

optimization of the ME can be achieved in exactly two passes, one finding the

optimal column permutation, the other finding the optimal row permutation.

These two passes can be carried out completely independently of each other.

In particular, it is not necessary to alternate between row and column permu-

tations, as in the Moment Ordering Algorithm, thus eliminating the possibility

of any cyclings of the solution.

Since the contribution to the ME from any column (or row) is only affected by

the two adjacent columns (or rows), the optimization lends itself very well to a

multistage sequential selection process.

The Bond Energy ME optimization does not require any prior prejudices, such

as forcing the data into clumps along the diagonal or forcing the data into

block-diagonal form. The representation of the data that is sought is a tight

clumped form and so the maximization of the ME might very well allow the

possibility of far outlying elements in order to achieve globally higher degree of

compactness. This feature is particularly important in the case of multilateral

relations between groups of entities where it is clearly not possible to obtain a

block-diagonal form.

5. This phenomenon occurs when the solution gets alternately better then worse.

20



ogle 1/k power6 of al. appearing in the expression for the ME allows any desired
1.1

weighting of the larger matrix elements.

C. THE SOLUTION: MAXIMIZATION OF THE ME

1. The Exact Solution

The problem to be solved as implied earlier is to maximize the ME over all row and
column permutations. That is,

Max 1 1

0)46) 70), + 1) 7(1),

[ailk
7

E al /k

1), Ir(i 1)) gid
al/k

where it = 1 7r (1), 7r (2), . . . , it (M)1 and = f (1), (/)(2), . . , (N)

are the row and column permutations. This can be thought of physically as maximizing the
sum of all the bond energies and mathematically as maximizing the sum of all the scalar
products of contiguous row vectors and column vectors. This maximization problem can be
stated equivalently as two quadratic assignment problems (the reader is referred to Appendix
A for the detailed formalism). The first seeks a permutation of the columns of [aid] which
maximizes the row bond energy, the other seeks a permutation of the rows of [aid] which
maximizes the column bond energy. These optimizations may be viewed as two clustering
procedures, one which reorders the rows on the basis of their similarity (similarity being
measured by the scalar product of the two rows), the other reordering the columns. Reas-
sembling the matrix after both clusterings produces the dense blocks shown in Fig. 6.
Although quadratic assignment problems can be solved exactly as well as approximately (for
exact and approximate methods see the references listed in Appendix A), the solution of this
problem requires a large amount of computer time in either case. Our own approximate
sequential selection algorithm has been developed which takes advantage of the nearest
neighbor properties of the measure of effectiveness.

2. Approximate Solution

a. Description of the Sequential Selection Algorithm. The suboptimal algorithm which

has been actually used to determine local optima of the ME is as follows:

6. The sensitivity of the ME to the value of k is discussed in Appendix G.

21



(1) Compute and store the scalar products of each row with every other
row and each, column with every other column.

(2) Select any column to begin the selection process. Set i=1.
(3) Next, try each of the remaining N-1 columns placed alongside the first

column and compare its contribution7 to the horizontal bond ME.
(4) Place alongside the first column that particular column which gives the

largest contribution to the ME.
(5) Continue the process at the ith step by comparing the contribution to

the ME by placing each of the N-i remaining columns in each of the i+1
possible positions,8 and putting the one which gives the largest con-
tribution to the ME in its proper place.

(6) After the process is completed by placing the last remaining column in
its "best" place, then the entire procedure (items 2 through 5) is
repeated on the rows. It is, however, not necessary to repeat the
procedure on the rows if the initial input matrix is symmetric since the
final resulting row order will be identical with the column ordering,
yielding a symmetric matrix.

b. Advantages of the Algorithm. The algorithm described above has several attractive
advantages which are noted here.

Om...Nam

(1) Since the algorithm is finite and non-iterative, there are no convergence

problems.

(2) The algorithm will always reduce a matrix to pure block form if it is
possible to obtain this form by row and column permutations (see
Appendix B for proof).

(3) The solution obtained from the algorithm is independent of the input
order of the rows (or columns) but is only dependent on the initial row
(or column) chosen to start the sequential selection process.

(4) The results of the algorithm are very insensitive to the starting point
(Le., starting row or column), hence any solution is a "good" one (see
Table 2).

(5) The computation time for the algorithm depends only on the size of
the matrix and not on its elements.

(6) The algorithm uses no thresholds or filtering during its operation which

can alter its course and affect the final result.

(7) Only the raw input data matrix is used to determine the new row and
column orderings.

m is just the dot product of the chosen column vector with the first column vector.
&tuns are to the left and right of the i columns already placed.

7. The cc
8. The i

22



3. An Example

A simple example taken from Principles of Numerical Taxonomy (Ref. 15) will

illustrate how the algorithm can identify the clusters and their interrelationships. The

similarity matrix of Fig. 7 is given where a numerical value of 5 in element i,j indicates a high

degree of similarity between entity i and entity j, and 0 indicates no similarity.

E F GH I JA B C D

A 5 4 1 0
B 4 5 0 1

C 1 0 5 0
D 0 1 0 5

E 4 3 1 0

F 1 1 3 0

G 1 1. 3 0

H 0 0 0 4
3 4 1 0

J 1 1 2 1

11-12-69-9

4
3
1

0
5
1

0
0
4
1

1 1 0 3 1

1 1 0 4 1

3 3 0 1 2

0 0 4 0 1

1 0 0 4 1

5 3 0 1 3

3 5 0 1 2

0 0 5 1 0

1 1 1 5 1

3 2 0 1 5

FIGURE 7. Initial Non-Binary Similarity Matrix

By applying the algorithm described above, a new axis ordering and a new matrix are obtained

and are shown in Fig. 8.

H D B A E I J F G C

H 5 4 0 0 0 1 0 0 0 0

D' 4 5 1 0 0 0 1 0 0 0

B 0 1 5 4 3 4 1 1 1 0

A 0 0 4 5 4 3 1 1 1 1

E 0 0 3 4 5 4 1 1 0 1

I 1 0 4 3 4 5 1 1 1 1

J 0 1 1 1 1 1 5 3 2 2

F 0 0 1 1 1 1 3 5 3 3

G 0 0 1 1 0 1 2 3 5 3

0 0 0 1 1 1 2 3 3 5

11-12-69-10

FIGURE 8. Reordered Non-Binary Similarity Matrix

It is easy to identify three major diagonal blocks of large numbers representing three clusters

or groups of entities. H and ro constitute the first group, B, A, E and I the second group, and J,

23



F, G and C the third group. From the grouping of the smaller off-diagonal elements it is

evident that there is some weak relationship between the second and third groups but

essentially no relationship between the first group and either of the other two. It is also quite

apparent from this example that this new form for the matrix data conveys more information

concerning the group structure and relationships than does the original matrix form.

D. OPERATION OF THE ALGORITHM

1. Computing Time Requirements

If the original data matrix is of dimension M by N, then the total number of arithmetic

operations necessary to perform all the initial row and column dot products is just:
M - 1 N - 1

Operations = N Ei + ME j or,
i = 1 j = 1

Operations = N 1.22----" + M N(N
2
- 1)

2

for large M and N,
m2N N2m

Operations

At step i of the algorithm, it is necessary to compare the contribution of the ME of all the

remaining N-i unplaced columns in the i+l possible positions, thus the total number of column

comparisons equals
N -1 N - 1

2 + 1) (N - i) = E
i =1 i =1

iN i2 + N -i

N3
for large N.

6

Similarly it requires approximately M3/6 comparisons far the rows. Thus for a square matrix,

the computation time of the algorithm goes as N3. This theoretical variation in the computing

time has been borne out experimentally as can be seen in Table 1. The computing time9 in

seconds is given for various size problems (times given are for a single starting point).

9. On CDC 1604 computer using University of Minnesota compiler.

24



Table 1. BOND ENERGY ALGORITHM COMPUTATION TIME

N M Time

21 21 11 sec
29 29 23 sec
48 48 124 sec

From this data a scaling law can be derived which gives the required computation time
in seconds for a given size square matrix, for a single starting point.

Computation Time (sec) = 0.0012 N3

2. Ties

It occasionally happens that ties occur during the course of the sequential selection
algorithm. Ties between rows and columns can occur in the following ways:

(1) Tie arising from putting the same as yet unplaced column (or row) in
two or more possible positions.

(2) Tie arising from putting different as yet unplaced columns (or rows) in
the same positions.

(3) Ties arising from putting different as yet unplaced columns (or rows) in

different possible positions.

We have no present criterion for deciding how to break ties arising from condition (1), nor is it

known whether there is reason to select one alternative over the others. Ties arising from

conditions (2) and (3) are broken by selecting the unplaced row or column which has the

shortest length in the L2 norm.1° Thinking in terms of the ME mathematically, if we can

obtain the same scalar products or projections with two vectors, then the shorter should be

used rather than the larger one. This tie-breaking mechanism has been found to work
satisfactorily in that it leads to informative final data arrangements.

3. Effect of Starting Point

Although the results of the algorithm do not depend on the order in which the rows
and columns are considered, there is a difference in the final results depending on which row
or column is selected to start the multistage decision process. In the example presented in Figs.

7 and 8, the problem was started 10 times, beginning once with each column. Table 2 gives the

frequency of occurrence and final ME for each distinct solution.

10. This is just the square root of the sum of the squares of all the elements of the vector.

25



Table 2. FREQUENCY DISTRIBUTION OF ME

Solution No. Frequency ME
MOI.

1 3 419
2 3 419
3 1 414
4 2 414
5 1 412

Several significant facts may be noted from these results. First of all, the solutions with the
highest ME, 419, which are believed to be the globally optimum solutions, occur 60 percent of
the time. The difference between the best and worst solution is only 7 out of over 400, or less
than 2 percent. A noteworthy point here is that the final "solution" (ME) depends very
weakly on the starting point and even the worst ''solution" is nol, very far from the optimal
solution. With regard to the final group structure, it has been found that the various near
optimal solutions do not differ significantly from the optimal solution. The various solutions
are due to the rearrangement of the entities within a cluster group and the reordering of the
groups themselves. These results have been confirmed by experimentation on significantly
larger matrices.

4. Formatting Data

The input format for the data can be in any matrix form. This means that the Bond
Energy Algorithm permits analysis of the raw data without forming a similarity matrix." For
example, suppose we have an object-attribute matrix and we desire to find out which objects
are similar. The advantage of performing the grouping directly upon the object-attribute
matrix, rather than upon the similarity matrix, is that it is now possible to determine which
attributes characterize a particular group of objects (see example 4).

E. APPLICATIONS

Several applications of this method have already been attempted and others have been
suggested. It appears that the algorithm is applicable to a wide class of problems, a number of
which will be enumerated here.

(1) Identification of natural groups and subgroups within data.
(2) Identification of relationships and dependencies between groups.
(3) Relationships of groups of attributes to groups of objects.

(4) Examining influence relationships and structures via nonsymmetrical
data matrices.

11. A similarity matrix is a symmetric matrix whose ijith element is a measure of the similarity of entity i to entity j.
Applying the Bond Energy Algorithm to a similarity matrix identifies (as the diagonal blocks) the main groupings of
entities and (as the off-diagonal clumps) the intergroup relationships.

26



(5) Analysis of hierarchical clustering and grouping via quantified numeri-
cal relationships.

(6) Factoring of large linear assignment problems (Ref. 32).
(7) Factoring of large management problems to identify optimal subtasks.
(8) Clustering of correlation matrices.
(9) Solution of traveling salesman problems (Ref. 31).

(10) Unscrambling flow graphs and network relationships.

F. EXAMPLES

A number of examples are presented in the following paragraphs to illustrate the
operation and the potential application of the Bond Energy Algorithm. It should be clearly
understood that the algorithm operates on matrices that contain "hard" numerical entries and
therefore considers each data matrix to be an exact representation of the relationships
involved. We feel, nevertheless, that the algorithm has application for problems involving
"soft" data (Airport example) as well as "hard" data (Hindi consonant example), as long as
proper care is taken to judiciously weigh the results subject to the degree of validity of the

input information.

1. Example 1

Bonner (Ref. 3) has presented several clustering techniques which uncover group
structure in matrix data. For this example, the Bond Energy Algorithm is applied in several
different ways to illustrate its advantages and directness for gathering similar data into clusters.
The objects which will be clustered are defined by a set of attributes which characterize them.

Bonner presents a binary description of an object set as an object-attribute matrix
which is shown in Fig. 9. ATTRIBUTE NUMBER

1 2 3 4 5 6

1 1 0 0 1 0 0
2 1 1 0 1 0 0
3 0 0 1 1 1 1

OBJECT NUMBER 4 0 1 1 0 0 1

5 1 0 0 1 1 0

6 0 0 1 0 1 0
7 0 1 0 1 0 1

8 1 1 1 0 0 0
11-12-69-11

FIGURE 9. Initial Binary Object-Attribute Matrix

27



He then proceeds to form a similarity matrix P, where the Pii are defined as

Ci.
P..

and C.. is the number of attributes which are "one" for both object i and object j. The
similarity matrix corresponding to Fig. 9 is shown in Fig. 10. A threshold T=0.45 is then used
to convert the fractional similarity matrix of Fig. 10 to a binary similarity matrix by setting
those matrix elements to one whose values are greater than 0.45 and the rest equal to zero.
This similarity matrix is shown in Fig. 11. Bonner then uses this similarity matrix as a starting
point for several clustering techniques.

2
3

OBJECT NUMBER 4

6
7
8

11-12-69-12

OBJECT NUMBER

2 3 4 5 6 7 8

2/3 1/5 0 2/3 0 1/4 1/4
1 1/6 1/5 2/4 0 2/4 2/4

1 2/5 2/5 2/4 2/5 1/6
1 0 1/4 2/4 2/4

1 1/4 1/6 1/5
1 0 1/4

1 1/5
1

FIGURE 10. Initial Fractional Object Similarity Matrix

'OBJECT NUMBER

11-12-69-13

OBJECT NUMBER

1 2 3 4 5 6 7 8

1 1 1 0 0 1 0 0 0
2 1 1 0 0 1 0 1 1

3 0 0 1 0 0 1 0 0
4 0 0 0 1 0 0 1 1

5 1 1 0 0 1 0 0 0
6 0 0 1 0 0 1 0 0
7 0 1 0 1 0 0 1 0
8 0 1 0 1 0 0 0 1

FIGURE II. Initial Binary Similarity Matrix

The Bond Energy Algorithm has several advantages over Bonner's technique. First, it is

able to operate directly on the object-attribute matrix without forming a similarity matrix thus
permitting it to identify those particular attributes that characterize objects in the same
cluster. Second, the application of the algorithm will never result in a loss of information since

28



the data are only rearranged. Finally, even using a similarity matrix the algorithm can produce

a reordering which not only displays the clusters but also their strengths and relationships.

These advantages will be demonstrated by successive application of the Bond Energy Algo-

rithm to the matrices of Figs. 9, 10 and 11.

When the object-attribute matrix of Fig. 9 is rearranged by the Bond Energy
Algorithm, the new data matrix of Fig. 12 is obtained. When rectangles are constructed around

solid blocks of is in two or more rows and columns, it can be seen that the objects fall into 4

"core" clusters: 3,6 and 2,1,5, and 4,7, and 8. It is also observed that attributes 3 and 5 are the

essential characterizing attributes of the 3,6 object cluster, attributes 4 and 1 are the

characterizing ones for the cluster containing objects 2,1 and 5, and attributes 2 and 6
characterize the cluster containing objects 4 and 7.

ATTRIBUTE NUMBER

8
4
7

OBJECT NUMBER 2

1

5
3

6
11-12-69-14

4 1 2 6 3 5

0 1 1 0 1 0
0 0 1 1 1 0

1 0 1 1 0 0
1 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1 11
0 0 1 1 1

FIGURE 12. Reordered Binary Object-Attribute Matrix

When the Bond Energy Algorithm is applied to the fractional object similarity matrix

of ,Fig. 10,2 new ordering is obtained. In this new ordering in Fig. 13,

OBJECT NUMBER

6 3 5 1 2 7 4

6 1 2/4
3 2/4 1

5 1 2/3 2/4
1

OBJECT NUMBER
2

2/3
2/4

1

2/3
2/3

1 2/4 1-274-1

7 2/4 1- 2/4
4 2/4 1 2/4
8 2/4 2/4 1

FIGURE la. Reordered Fractional Object Similarity Matrix

29



only the larger elements (i.e., 1/2 or greater) are shown so that the clusters can be more easily
identified. Again, it is possible to identify the clusters and how they interrelate. Objects 3 and
6 form a very tight independent cluster. Objects 5,1,2 form another tight cluster, although
there is a non- trivial relationship between object 2 and objects 7 and 8. Objects 4 and 7 form
another cluster that is somewhat related to objects 2 and 8. Thus, visually, this form of data
presentation is helpful and its computational requirements are very small (less than one
second).

When the Bond Energy Algorithm is applied to the binary similarity matrix of Fig. 11,
the result is given in Fig. 14. It is quite apparent that these results illustrate the same
relationships and clusters as those shown in Fig. 13, but are inferior since the strengths of the
relationships are not shown. This illustrates that while Banner's filtering technique leads to the
uncovering of major clusters, it also loses information present in the original data matrix.

OBJECT NUMBER

11-12-69-17

OBJECT NUMBER

6

5
2
-7

4
8

0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 0 1-1
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1

0 0 0 0 Q 1 0 1

FIGURE 14. Reordered Binary Similarity Matrix

2. Marketing Techniques and Applications

In displaying the data relationships in this example, it is found that the application of
the Bond Energy Algorithm reveals several latent group associations and significantly enhances
the quality of the presentation of the data.

Figure 15 contains a matrix showing which Marketing Techniques are used for
particular Marketing Applications.' 2 By application of the algorithm it is possible to reorder
or relist the marketing applications on the one axis and the marketing techniques on the other

12. The data for this example were taken from the September-October 1969 issue of the Harvard Business Review

from "Techniques in Marketing Research' by J.F. Dash and C. Berenson.

30



ADVER-
TISING

RESEARCH

ACQUI-
SITION

SCREENING
BRAND

STRATEGY

CUSTOMER
SEGMEN.
TATION

CUSTOMER
SERVICE

DISTRI-
BUTION

PLANNING

MARKET
SEGMEN-
TATION

PRICING
STRATEGY

PRODUCT
LIFE-CYCLE
ANALYSIS

PRODUC
LINE

ANALY.

REGRESSION & CORRELATION
ANALYSIS

X X X X

DISCOUNTED CASH
FLOW (DCF)

X

INCREMENTAL
ANALYSIS X X X

MULTIPLE REGRESSION/
CORRELATION X X

RANDOM
SAMPLING

SAMPLING
THEORY

X

BAYESIAN
APPROACH X X X

COST-BENEFIT
ANALYSIS X

CRITICAL PATH
METHOD (CPM)

DECISION
TREES

X X X

DYNAMIC
PROGRAMMING X

EXPONENTIAL
SMOOTHING

INDUSTRIAL
DYNAMICS X X

1NPUT-OUTPUT
ANALYSIS

LINEAR
PROGRAMMING X X

MARKOV
PROCESS

X X

MONTE CARLO
SIMULATION X X X

NONLINEAR
PROGRAMMING

X X

NUMERICAL
TAXONOMY X X X X II

PERT

QUEUEING
MODELS X X

RISK
ANALYSIS X X X

SENSITIVITY
ANALYSIS

X X X

TECHNOLOGICAL
FORECASTING X X

-



1

MER
CE

DISTRI-
BUTION

PLANNING

MARKET
SEGMEN-
TATION

PRICING
STRATEGY

PRODUCT
LIFE-CYCLE
ANALYSIS

PRODUCT
LINE

ANALYSIS

PRODUCT
PLAN-
NING

R&D
PLAN-
NING

ROI
ANAL-
YSIS

SALES
FORE-

CASTING

TEST

MARKET-
ING

VENTURE
PLAN-
NING

X

-I
X

X

X X X X

X X X

X

X X

X X X X

X

X X X X X

X X

X X X

X

X X

X X X X X

X

X X
X

X

X

x x x X

X X

X X

X x

X X X X X X X

FIGURE 15. Initial Matrix of Marketing Techniques and
Applications

31



CUSTOMER
SEGMEN
TATION

MARKET
SEGMEN
TATION

SALES

FORE
CASTING

BRAND
STRATEGY

ADVER
T1SING

RESEARCH
PRICING

STRATEGY

ACQUI-
SITION

SCREENING

PRODUCT
LINE

ANALYSIS

VENTUR
PLAN
NI NG.......

MARKOV
PROCESSES

X X

NUMERICAL
TAXONOMY X X X X

REGRESSION & CORRELATION
ANALYSIS X

:......

....*.
ti - eerier' ceiwt .

:"1:.:::':::::.'

':.
4...

wet si et's

X

MULTIPLE REGRESSION/
CORRELATION

.
:.

...... '''. . ...:X..4.,

*

-: ,, ...
::.

:, ,
:

.':,:,

SAMPLING
THEORY

.1:**::**:>
-:4::::::::::::...:.
:,..;*_:_.'.ipi.:A.,

..j.....:k: 14.t.

.: :,

'....*,...4:.*:::::,:k....4

.
...%:

'.:0 :::.. X
4'

.."'::K:..-
....%

:. ...::.

EXPONENTIAL
SMOOTHING X

INPUTOUTPUT
ANALYSIS XXX

,

::::.
$,.'
f4i$4IIUitiI11111ftt1

.... .4:
:.

.....*::. ?...;

.1

.;:::.
44 , ,...;

::::
,,,

TECHNOLOGICAL
FORECASTING

CRITICAL PATH
METHOD (CPM)

.. .

....

, ,
4 ......::*:::::::::::5

x*4....*.:.::?...,:.*...:::::*.i:::':f.':..N.,::

,
%.-..-'...,

,....
..:.:.:.

.. - n
:.

PERT

MONTE CARLO
SIMULATION X X X X

DISCOUNTED CASH
FLOW (DCF) X

DYNAMIC
PROGRAMMING X

COSTBENEFIT
ANALYSIS

BAYESIAN
APPROACH X

DECISION
TREES

.... ki::::igniiii

::?::,
..:.

V ;1

....

:::

''''. I

,:.:...::::::::::4::.4::::.:.:.*.:
":.:::y...

:AtNig:
RISK
ANALYSIS

4:..;::
...?.*:....:4::::

:.
ii*.*::::0;:i*: :..,-...

::..k. 4.
:....

:,..A ,..*.
:::::. ..

.k.::.:::::::::.:*::::::: ......

..'`':0
1,cti:.::4. .. ::::. :":
'",::::M Sii: .

SENSITIVITY
ANALYSIS

,..,:::..:::,:iii:.. ::

':.4,:.: N 4. :-::: '',, 't X .

.%P.0.1..Avk .:;,k ..V .

:::::V.i....Y......:::, 4:: :*:::'
::...:4'.'NX% s :... ...

''. %.,,tbs.

M:t$,..._...A:w....
..10.bui. %...e:.:

of:: ts.,\,...
INCREMENTAL
ANALYSIS X X

INDUSTRIAL
DYNAMICS X

QUEUEING
MODELS

LINEAR
PROGRAMMING X

NONLINEAR
PROGRAMMING X

RANDOM
SAMPLING



'RICI NG
tRATEGY

FIGURE 16. Reordered Matrix of Marketing Techniques
and Applications

33



axis, while preserving all the data relationships contained in the original matrix. Fig. 16
contains the reordered matrix produced by the Bond Energy Algorithm. With the data in this
new matrix form, it is now possible to identify three major clusters or clumps of data. It is
believed that in this new form it is possible to uncover useful information that was not obvious
from the original matrix.

First, the algorithm groups marketing analysis techniques that are used for the same
applications and also it groups marketing applications that utilize the same marketing tech-
niques. This has the effect of putting similar marketing techniques near one another on the
vertical axis and putting similar applications together on the horizontal axis. It is postulated
that the clumps provide, for one thing, a basis for efficient assignment of responsibilities to
analysts and their supervisors, and for another, by exception, a basis for deciding upon the
relative merits of "techniques" specialists and "applications" specialists.

Second, if it is possible to factor a matrix completely so that it is apparent that there is
a unique relationship between a certain group of marketing techniques and a certain group of
marketing applications, then the algorithm will accomplish this. In this example, this has been
partially done by identifying three more or less independent clumps in Fig. 16. In particular, as
was noted by the authors, PERT and CPM are similar in concept and hence they occur
together in the same clump. Also, as noted in the article, risk analysis is often used in
conjunction with the method of decision trees. Here again, these marketing techniques are
contiguous in the new ordering. On the other axis it is found that similar "marketing
applications" are grouped together. For example, Product planning, R&D planning, Venture
planning and Product-line analysis all involve planning of some sort and occur in the same
clump because they utilize common "marketing techniques" for planning, such as PERT, CPM,

etc.

Another possible way in which the clumped matrix of Fig. 16 can be useful is to
suggest possible unexploited application of techniques to marketing applications to which they
have not already been applied. These could be identified by looking for conspicuous holes
within the clumps or omissions on the borders of the clumps.

Thus, it appears in this example, that with proper arrangement of binary (yes-no) or
quantified data given in matrix representation, that the amount of information conveyed can
be significantly enhanced to such an extent that it is undesirable to present it in other than
clustered form.

35



3. Coordinating Airport Design' 3

A practical way to design an airport is to factor the problem into a number of smaller

pieces. If the subproblems can be solved separately and then adjusted so as to remain valid in

the context of the original problem, then the task is completed. It is, however, necessary to

determine the best way to factor the big problem into more manageable pieces.

A numerical example will illustrate the applicability of the Bond Energy Algorithm to

the problem. The objective is to exploit the structure of an airport problem in such a way as to

identify two things:

The "natural" subproblems

The necessary coordination between subproblems.

The ultimate accomplishment would be to factor the problem into small, completely

independent subproblems. But given that complete independence is impossible, the next best

thing is to minimize the intergroup dependencies by identifying the optimal way to subdivide

the problem.

The first step is to describe the airport problem in terms of a set of variables and their

interrelations. A partial list of exogenous and control variables is shown in Table 3.

The exogenous variables describe those factors mostly dictated by the environment

while the control variables apply to those factors primarily under control of an airport planner.

Let Xi be the ith exogenous variable and let Di he the ith control variable. The Xi's may be

thought of as input data and Di's as the design decisions. Given a set of values for the Xi's, it is

assumed that there exists some way of measuring the performance of an airport design based

on some criteria. The details of the performance function are not needed; just a few basic

characteristics. Let P be the measure of performance and let F be the function that measures

performance. Clearly, P is a function of the Di's, hence

P=F (Di, D2. , D27).

F will, in general, depend on the Xi's; however, the discussion will be limited to a specific set

of values for the Xi's. The design problem involves selecting values for the Di's that maximize

13. Tine analysis and the data for this application are due to Mr. T.W. White of the Institute for Defense Analyses.

36



Table 3. AIRPORT VARIA

Exogenous Variables
1, Total air travel demand
2. Originating passengers
3. Transferring passengers
4. Terminating passengers
5. Greeters and well-wishers
6. Access ground transportation mode for p
7. Egress ground transportation mode for
8. Airport employees
9. Taxis and cars that do not park

10. Cars whose drivers park and fly
11. Rental cars going to the airport
112. Rental cars driven from the airp
13. Bus and limousine
14. Employee access transportati
15. Passenger trip duration
16. Aircraft turn around time
17. Mix of aircraft by capacit
18. Gate schedule: aircraft
19. Origin/destination pat
20. Air cargo demand
21. Runway demand

Control Variables
1. Passenger check-in
2. Baggage check-in
3. Baggage claim
4. Baggage moving system
5. Intra-airport transportation system
6. Cargo terminal
7. Close-in parking lots
8. Remote parking lots
9. Main access roads to and from airport

10. Circulation roads within airport
11. Service area for rental cars
12 Parking lots for rental cars
13. Curb space for unloading
14. Curb space for loading
15. Waiting areas at gates
16. Stations for intra-airport transportation system
117. Aircraft loading system
118. Concessions
19. Rental car desk
20. Runway capacity
21. Number of gates
22. Passenger information
23. Cargo transfer
24. Air traffic control system
25. Refuse removal
26. Flight operations and crew facilities
27. Aircraft service on the apron

rt

on mode

on apron
y

arrivals and departures
tern for baggage at airport

assengers
passengers

. 37

BLES



P. The problem can be simplified, for example, if the function F "factors" into two parts; that
is, if there are two functions Fa and Fb and if the Di's can be split into two groups such that

F (D1,...., D27) = Fa(A) + Fb(B)

where A and B are groups of Di's such that no Di is common to both A and B. A and B
represent subproblems that can be solved separately. The general goal is to break the function
into as many "factors" as possible such that there is no, or very little, interaction between
factors.

The next step is to determine the interaction between all pairs of control variables, Di
and forfor example. Does the behavior of Di with respect to the performance function F
depend on Di? Let R(i,1) be the answer where R(i,j) may take on one of four values as follows:

0 =

1 =

2 =

3 =

no obvious dependency
weak dependency

moderate dependency
strong dependency.

Based on White's subjective judgment, values for R(i,j) were generated and appear in Fig, 17. It
is assumed that R(i,j) = Ra ,i). Note that the ordering of the items in the matrix produced very
scattered data. The eye is not able to identify any striking organizational structure.

The Bond Energy Algorithm was applied using the original matrix as a starting point
with the objective of rearranging the rows and columns of the matrix to obtain a bet'ier order.
The algorithm tends to push the larger numbers together into clumps and favors large clumps
over smaller ones. There is no preferential orientation of the final clumps; however, the
symmetry of the original matrix about its diagonal results in a symmetrical final arrangement.
The improved ordering is shown in Fig. 18. (The algorithm applied to the original matrix
required about 2 minutes of CDC 1604 computer time for a number of starting points.)

After studying the matrix in Fig. 18, it appeared that there were eight clumps of
numbers as indicated in the figure. The clumps contain all of the strong dependencies (the 3s)

and all but six of the moderate dependencies (the 2s).

The interpretation of Fig. 18 is that clumps along the diagonal correspond to natural
divisions of the big problem into subtasks. The off-diagonal elements not included in any
clump correspond to coordination links. Figure 19 illustrates this interpretation. The items are

38



CONTROL VARIABLES

I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 3 0 2 2 0 1 1 0 0 0 0 2 0 0 0 0 1 0 0 0 3 0 0 0 0 0

2 3 3 0 3 0 0 1 1 0 0 0 0 2 0 0 1 0 0 1 0 0 3 0 0 0 0 0

3 0 0 3 3 1 0 1 1 0 0 0 0 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0

4 2 3 3 3 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

5 2 0 1 0 3 0 2 2 1 1 0 0 0 0 0 3 0 0 1 0 3 1 0 0 0 0 0

6 0 0 0 0 0 3 0 0 2 1 0 0 0 0 0 0 1 0 0 1 0 0 3 0 0 1 2

7 1 1 1 0 2 0 3 2 2 3 1 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0

8 1 1 1 0 2 0 2 3 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 1 2 2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 1 1 3 2 3 3 1 1 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 1 0 0 1 3 3 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

12 0 0 0 0 0 0 0 0 0 1 3 3 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

13 2 2 0 1 0 0 1 0 0 2 0 1 3 0 0 1 0 0 1 0 0 2 0 0 0 0 0

14 0 0 3 1 0 0 1 0 0 2 0 1 0 3 0 1 0 0 1 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 d 0 0 3 1 1 1 0 0 3 1 0 0 0 0 1

16 0 1 1 0 3 0 1 1 0 0 0 0 1 1 1 3 1 1 1 0 3 2 0 0 0 0 0

17 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 3 0 0 1 1 0 1 0 0 0 3

18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 0 0 0 1 0 0 2 0 0

19 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 3 0 0 1 0 0 0 0 0

20 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 3 2 0 0 3 0 1 0

21 0 0 0 0 3 0 0 0 0 0 0 0 0 0 3 3 1 0 0 2 3 0 0 1 0 1 1

22 3 3 0 0 1 0 1 0 0 0 0 0 2 0 1 2 0 1 1 0 0 3 0 0 0 0 0

23 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 1

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 3 0 2 1

25 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 3

26 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2 0 3 0

27 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 3 0 0 0 1 0 1 1 3 0 3

(SEE TABLE 3 FOR DESCRIPTION OF VARIABLES BY NUMBER. )
11.12.69.10

FIGURE 07. Dependency Matrix for Airport Variables

CONTROL VARIABLES

918 25 27 23 6 17 15 21 16 5 8

18 0 0 0 1 0 1 0 03 2 0

25 2 3 3 0 0 0 0 0 0 0 C

27 0 3 3 1 2 3 1 1 0 0 0

23 0 0 1 3 3 1 0 0 0 0 0

6 0 0 2 3 3 1 0 0 0 0 0

17 0 u 3 1 1 3 1 1 0 0

15 1 0 1 0 0 1 3 3 1 0 0

21 0 0 1 0 0 1 3 3 3 3 0

16 1 0 0 0 0 1 1 3 3 3

5 0 0 0 0 0 0 0 3 3 3 2

8 0 0 0 0 0 0 0 0 1 2 3

9 0 0 0 0© o 0 0 0 1 2

10 0 0 0 0 1 0 0 0 0 1 2

7 0 0 0 0 0 0 0 0 1 2 2

13 0 0 0 0 0 0 0 0 1 0 0

22 1 0 0 0 0 0 1 0F2 1 0

1 1 0 0 0 0 0 0 0 0 2J1
2 0 0 0 0 0 0 0 0 1 0 1

4 0 0 0 0 0 1 0 0 0 0 0
3 0 0 0 0 0 0 0 0 1 1 1

114 0 0 0 0 0 0 0 0 1 0 0
119 0 0 0 0 0 0 0 0 1 1 0

12 0 0 0 0 0 0 0 0 0 0 0

11 0 1 0 0 0 0 0 0 0 0 0

20 0 0 0 0 1 1 0 0 0 0

24 0 0 1 0 0 0 0 1 0 0 0

26 0 0 0 0 1 0 0 1 0 0 0

11.12.69.19

0

0

0

0a
0

0

0

0

2

3

3

2

0

0

0

0

0

0

0

0

0

0

0

10 7 13 22 1 2 4 3 14 19 12 11 20 24 26

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 1 1 0 1 0 1 1 0 0 0 0 0

1 2 0 1 0 0 1 0 1 0 0 0 0 O
2 2 0 0 1 1 0 1 0 0 0 0 0 0 0

3 2 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 210 0 0 0 0 El 1 1 1 0 0 0

3 3 1 1 1 1 0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 0 01..2j 1 3 2 2 2 1

0 1 2 3 3 3 0 0 0 1 0 0 0 9 0

0 2 3 3 3 2 0 0 0 0 0 0 0 0

0 2 3 3 3 3 0 0 1 0 0 0 0 0
0 0 1 0 2 3 3 3 1 0 0 0 9 0 0

0 0 0 0 0 3 3 3 0 0 0 0 0

0 0 0 0 1 3 3 1 1 0 0 0 0
0 1 1 0 1 0 1 3 1 0 0 0 0

0 1 0 0 0 0 0 1 3 3 0 0 0

1 0 0 0 0 0 0 0 0 3 3 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 3 3 1

0 0 0 0 0 0 0 0 0 0 0 0 3 3 2

0 0 0 0 0 0 0 0 0 0 0 0 1 2 3

FIGURE 18. Reordered Dependency Matrix for Maximum Clumpiness

39



18. CONCESSIONS
25. REFUSE REMOVAL
27. AIRCRAFT SERVICE ON APRON
23. CARGO TRANSFER
6. CARGO TERMINAL

17. AIRCRAFT LOADING SYSTEM
15. WAITING AREAS AT GATES
21. NUMBER OF GATES
16. STATIONS FOR INTRA-AIRPORT

TRANSPORTATION
5. INTRA-AIRPORT TRANSPORTATION

SYSTEM
8. REMOTE PARKING LOTS
9. MAIN ACCESS ROADS

10. CIRCULATION ROADS
7. CLOSE-IN PARKING LOTS

13. CURB SPACE FOR UNLOADING
22. PASSENGER INFORMATION

1. PASSENGER CHECK-IN
2. BAGGAGE CHECK-IN
4. BAGGAGE MOVING SYSTEM
3. BAGGAGE CLAIM

14. CURB SPACE FOR LOADING
19. RENTAL CAR DESK
12. PARKING LOTS FOR RENTAL CARS
11. SERVICE AREA FOR RENTAL CARS
20. RUNWAY CAPACITY
24. AIR TRAFFIC CONTROL SYSTEM
26. FLIGHT OPERATIONS AND CREW

FACILITIES

11-12-69-20

0

CZ Zn
0>

Z
Z I

i":1)

co)

r
> Z

C7

07.3

r-nn

PRIMARY

Ui

PRIMARY
SUBPROBLEMS COORDINATION

LINKS

FIGURE 19. Suggested Subproolems with Coordination Links

40



listed along the left of Fig. 19 in the order found on the "clumped" matrix (Fig. 18). As a first
approximation (shown below), the performance function can be split into eight factors
corresponding to the eight subproblems shown in Fig. 19.

P Fa (D18, D25, D27)

+ Fb (D27, D23, D6, D17)
Fc (1315, D21, Di6, D5)
Fd (D5, D8, D9, D10, D7)
Fe (D13,, D22, Di, D2, D4)
Ff (D4, D3, Di4)
Fg (Di2, D11)
Fh (D20, D24, D26)

Except for D27 (aircraft service on apron) and D5 (intra-airport transportation system), the
eight components in the above approximation form independent subproblems. The six coordi-
nation links shown in Fig. 19 could form the basis of six "correction factors" which would
improve the approximation. The correction factors would be of the form A (D6, D9), A b
(D10, D13), me (D10, D14), Ad (D16, D22), A (D5, D1), and O f (D20, D21).

4. Ordering of Error Matrices in the Analysis of Perception of Consonants

In this example, the Bond Energy Algorithm is used to reorder an error matrix
obtained from an experiment testing the perception of consonants. The matrix under consider-
ation is a square matrix with the 29 consonants lying on the vertical and horizontal axes. These
data were taken from an article by Ahmed and Agrawal (Ref. 29) in the Journal of the
Acoustical Society. In the experiment each consonant was enunciated in the intial position of
540 nonsense syllables. The a,13 element of the matrix contained the number of times
consonant f3 was heard when consonant a was spoken. It is clear than since the correct
consonants are heard most often, the diagonal elements of the matrix will be largest. For this
example, the square roots 14of the elements were used rather than the elements themselves,
and all the elements whose values are less than two are deleted.' 5 The error matrix was input
in a random manner and the best ordering of the reordered error matrix is shown in Fig. 20.
The square blocks lying along the principal diagonal of the matrix indicate that the consonants
have been clustered into 7 groups. These clusters represent those groups of consonants that
were most often confused with one another during the experiment. The off-diagonal non-zero

14. In this example the weighting k=2 is again used to preserve scale.
15. The mall elements are deleted so that the patterns formed by the larger elements may be visually identified more

eaey.

41



entries represent consonants in ore group being mistaken for consonants outside their group.
Note, for example, that one cluster contains the consonants dh, d, .d, and b which occur
together because they sound so much alike and hence were often mistaken for one another
during the experiment.

This example again illustrates how this method of direct analysis can be a significant
aid in determining inherent group structure contained in data matrices.

Tf d
3d

h tf h f s kh b
h

gh ph th
. r . d

h
dh d .d b w r .t t g k h im n I

Tf
hd3d,
tf

h

f

5

kh

23

23
2 23 3

2 23
23 5
4 23

23 2

h
3 23

2 22 4
2

2

3
3 2

PhP h 2 4 22 5 3th 2 23 3 2.t 2 3 11 20 2 2
.dh 2 2 3 211 9 3
dh 2 2 3 23 2

2 23 4 2
.d 5 23 2 2
b 2 3 23 3
w 23 5
r 3 23

2 22 6
.t 5 23 2

4 23
9 23
k 4 23
h 3 2 23

23
m 2 23 5
n 4 23

3 23
11-12-61P-21

FIGURE 20. Reordered ( HINDI) Consonant Error Matrix

42



5. Inter-City Distances

In this example, the Bond Energy Algorithm is applied to a geographical problem to
determine if it can satisfactorily cluster or clump together neighboring cities when a large
number of inter-city distances are given as input data. Since the algorithm clusters large
elements of a matrix, it was decided that the square root16 of inverse distance would be used
for the matrix elements. In particular, the elements. of the matrix al Acii are given by the
expression, (with k = 2)

a1 /2.. 100

d.

a'/2ij = 20

j, and

alli=j

where dij is the distance between city i and city j in hundreds of miles and the resulting matrix
elements are rounded to the nearest integer. This input matrix is given in Fig. 21, where, for
visual clarity, all the elements with values less than 7 have been deleted. It should be
remembered from the definition that the larger the matrix element, the closer are the two
cities i and j.

The matrix given in Fig. 22 is the reordered inverse distance matrix following operation
by the algorithm on the input matrix. Elements whose values are less than 7 have again been

deleted.

A number of clusters may easily be determined by identifying the square blocks of
data that occur along the main diagonal of Fig. 22. The first two cities, Helena, Montana, and
Bismark, North Dakota, are well isolated and constitute two separate clusters themselves. The
next two cities, Denver, Colorado, and Cheyenne, Wyoming, are quite close and constitute a
cluster. The next three cities, Des Moines, Iowa; Dubuque, Iox.r; and Chicago, Illinois, are
contained in the next cluster, and so forth. The one anomaly that does exist is the occurrence
of the rectangular off-diagonal block of 7s. This indicates that although Chicago, Detroit, and
Ft. Wayne are geographically near each other and are therefore in the same cluster, that
Detroit and Ft. Wayne are also near some cities in another cluster, i.e., Cleveland, Akron,
Columbus, and Cincinnati.

All these clusters may be verified geographically by referring to the map of the United

States given in Fig. 23. The cities under consideration are denoted by darkened squares and the
clusters are shown by the cities contained within each closed line.

16. The square root wog used to preserve scale and keep the matrix elements less than or equal to 20.

43



AKRON, 0.
ATLANTA, GA.
BALTIMORE, MD.
BIRMINGHAM, ALA.
BISMARK, N.D.
BOSTON, MASS.
BUFFALO, N.Y.
CHEYENNE, WYO.
CHICAGO, ILL.
CINCINNATI, 0.
CLEVELAND, 0.
COLUMBUS, 0.
DALLAS, TEXAS
DENVER, COLO.
DES MOINES, IOWA
DETROIT, MICH.
DUBUQUE, IOWA
EVANSVILLE, IND.
FT. WAYNE, IND.
HARRISBURG, PA.
HELENA, MONT.

z

s

z

20
20 7

20
7 20

7

7
20
10

7

20
20

0

LL

0
0

20 7
20

20
20 7 10

7 7 20 11.

10 10 20

10

7 7
7

20

10

20

7

7 7
7 7

7 7
7 7

20 7
20

7 20
7

10

7 20
7 7 7 7 7 7 20

10 20
2t

11.11.6942

FIGURE 21. Initial Inter-City Inverse Distance Matrix

HELENA, MONT.
BISMARK, N.D.
DENVER, COLO.
CHEYENNE, WYO.
DES MOINES, IOWA
DUBUQUE, IOWA
CHICAGO, ILL.
DETROIT, MICH.
FT. WAYNE,
HARRISBURG, PA.
BALTIMORE, MD.
BOSTON, MASS.
BUFFALO, N.Y.
CLEVELAND, 0.
AKRON,, 0.
COLUMBUS, 0.
CINCINNATI, 0.
EVANSVILLE, IND.
ATLANTA, GA.
BIRMINGHAM, ALA.
DALLAS, TEXAS
11.11.09.20

20

Z
O LL

z
O z

20 10
10 20

20 7
7 20

20
20 7

7 20
7 7 7
7 7 7 7

20 10

10 20

20 7 7
7 20 20 10 7
7 20 20 10 7

10 10 20 10
7 7 10 20

7 20
20
7 20

201

-FIGURE 22. Reordered Inverse Distance Matrix

44



HELENA
BISMARCK

CHEYENNE

DENVER

DUBUQUE DETROIT

DES MOINES FT. WAYNE

CHICAGO
r..

I P

IMMO IIM 111 Ii

I

dogma IIEMI NNW
014.

owe

mom mon. a . --PN

a - -
IMMO

I
ti

.
le,. %Aft. Ow".

3$

1

BIRMINGHA
AT

2-20-70-1

FIGURE 2



:K DUBUQUE

DES MOINES

DETROIT

FT. WAYNE

CHICAGO CLEVELAND

AKRON

BUFFALO

rk

BOSTON

OMNI r

- AMAMI

HARRISBURG

BALTIMORE

111 , 411 a
br

OWNED

MIMI.

NW.

.

neb. . ...0".

am. c'.

I

t.

BIRMINGHAM
ATLANTA

DALLAS

COLUMBUS

CINCINNATI

EVANSVILLE

FIGURE 23. Geographical Illustration of City Clusters

45



The cooclusion that can be drawn from this example is that the Bond Energy
Algorithm can indeed rearrange data geographically when it is presented in another order
(alphabetically).

47



II. THE MOMENT ORDERING ALGORITHM

A. INTRODUCTION

The purpose of the Moment Ordering Algorithm is to use the information contained in

an array of data to find a one-dimensional ordering of the rows (and columns) of the array.
This one-dimensional ordering will represent the ranking of the rows (and columns) under the

relationship which the algorithm finds to be the most important in analyzing the array. The

algorithm therefore provides a method of extracting, from the complex interrelationships

which may be expressed in the array, a single important relationship, and of organizing the

rows and columns according to this relationship. For example, one of the problems discussed

below involves an array describing the voting pattern of Senators. The algorithm in this case

takes the array, originally in the arbitrary form of an alphabetical listing of Senators and a

chronological listing of votes, and produces an ordering of the Senators, and of the bills voted

upon, based solely upon the original array, which represents a liberal/conservative ordering. A

second example involves an array consisting of archeological sites as the columns, and of

pottery types as the rows, with the entries being the concentration of a pottery type in a site.

The algorithm in this case privides a reordering which puts the pottery types, and the sites, in a

choronological order, based upon the fact that the most important factor in determining the

types of pottery found at these sites was the age of the site.

B. THE ALGORITHM

1. Motivation

The definition of the algorithm is based upon the fact that if two rows are similar to

each other, their mean row moments should be close to each other in value. The mean row

moment xi of row i is defined as
N

J = 1

j au



where a.. is the ijth entry in the array. This is merely another way of stating that rows are
similar if their large entries occur in the same columns, o, in columns close to each other.
Similarly, if two columns are closely related, their mean column moments, defined as

ME i a..
=1

Y.

should be close to each other in value.

M
a..

Based upon these observations, then, it is desirable to arrange an array so that its rows

are in order of the values of their row moments, while at the same time its columns are in
order of the values of the column moments. This state will correspond to a one-dimensional
ranking of both the rows and the columns according to the same underlying variable. The

algorithm provides a method of finding such states, and hence of ordering arrays of data.

2. Definition

The algorithm, beginning with an arbitrary arrangement of an array, proceeds in the

following way to find a state with the property described above, of having both the rows and

the columns of the array arranged in order of their moments:

1. The row moments are calculated for the original arrangement of the array, and
the rows are reordered to put them in order of their moments.

2. The column moments are calculated, and the columns reordered according to

their moments.

3. Because the reordering of the columns changes the values of the row moments,

the rows will no longer necessarily be in order of their row moments. The row

moments are therefore recalculated for the new arrangement of the columns,

and the rows reordered according to these new moments.

4. The procedure is continued, alternately reordering the rows and columns, until

a state is found in which both are simultaneously in order of their moments.

This state, then, is the desired ordering of the rows and columns, and is a

solution of the algorithm.

50



The algorithm is therefore entirely an iterative procedure. The progress of the algo-
rithm toward convergence, however, is marked by an increasing concentration of the larger
elements on or near the main diagonal.'

The progress of, the algorithm is illustrated, for a 4x4 array, in Fig. 24. The initial state
of the array is a; the values of the row moments for that array arrangement are also shown.
The algorithm then proceeds through states b, c, and d, by reordering the rows and columns
alternately. When state e is reached, it is found that the rows are already in the proper order
and do not need to be reordered. This marks that state as a solution.

The concentration of the larger elements on or near the main diagonal in the solution is
pointed out in Fig. 24 by circling, in the initial and final states, the four largest elements. They
are scattered in the initial state but in the solution three are cm the main diagonal and one is

just off it.

The following subsections present further details concerning the use. of the algorithm.
Section C presents several specific problems which have been investigated by use of the
algorithm, and illustrates the utility of the orderings produced by the algorithm.

3. Stable States and Multiple Solutions

The algorithm as defined above takes an arbitrary initial ordering of an array and finds

a stable reordering. It has been found, however, that if different initial orderings of the same

array are used, different solutions may be found. For example, Fig. 25 shows two different

solutions which can be found for a simple 3x3 array.2

When the algorithm is run many times on larger arrays, using different starting
orderings each time, it has been found that those solutions which occur most frequently

always are amongst the most diagonal arrangements of the array.3 Conversely, any solutions

which are very nondiagonal occur only rarely.

This observation has been used as the basis of a technique for obtaining a final ordering

of the rows and columns which best utilizes the additional information found in the multiple

solutions.

1. Appendix H discusses a measure of effectiveness which has been defined to measure this progress toward
diagonality. However, because unlike the Bond Energy Algorithm this algorithm was not developed tomaximize this quantity,
the measure of effectiveness defined has been found to be of only marginal use.

2. Appendix I describes an investigation which was made, for a 3x3 array, of the properties which lead to the existence

of these multiple solutions.
3. As measured by the correlation coefficient measure of effectiveness defined in Appendix H.

51



( INITIAL STATE)
ROW

g Y 6 MOMENTS

A

(a) CB

D

3 3 4 5 2.73
® 4 5 2 2.05

2 1 3 2.86
5 2.25

REORDER ROWS

a

B 8
D

A
7
3

C 2

NEW COLUMN 1.95
MOMENTS

A 6

4 5 2

6 2 5

3 4 5
1 8 3

2.07 2.79 2.60

REORDER COLUMNS

NEW ROW
/3 6 Y MOMENTS

B

(c) DA

C

8 4 2 5 2.21
7 6 5 2 2.10
3 .3 5 4 2.67
2 1 3 8 3.21

REORDER ROWS

t
i3 6

D 7 6 5 2

B 8 4 2 5

(d) A 3 3 5 4
C 2 1 3 8

NEW COLUMN 2.00 1.93 2.40 2.95
MOMENTS

REORDER COLUMNS

NEW ROW
a 6 Y MOMENTS

D 0 7 5 2 2.15
10 B 4 8 2 5 2.42

A 3 3 5 4 2.67
C 1 2 3 3.29

NO REORDERING OF
ROWS NECESSARY

(SOLUTION)
11-1.1-0-1

FIGURE 24. Operation of the Algorithm on a Small Array

52



SOLUTION I

8a

A 7
B 3

C 3

2
5

0

SOLUTION 2

'Y

1 A 7 1 2

2 3 7 0
7 3 2 5

II-13-69-3

FIGURE 25. Illustration of Multiple Solutions

The algorithm is run a "large" (25 or 50 has been found satisfactory) number of times,
each time starting from a different random ordering of the rows or columns, and the order of
the rows and columns found each time is saved.4 The average of the position taken by each
row (and column) in the solutions is found. (Solutions found more than once are entered once

for each time found in obtaining the average.) The rows' and columns' final order is then
simply the order of their average positions. Most often, this order will be the same as the order

in the most common solution; it is always very close to that order.

Despite the additional complication introduced, this technique is considered preferable
to merely taking the most common solution, because in the event that several solutions are
common, this technique best takes into account the alternative orderings each solution
represents in arriving at a consensus final ordering.

4. Additional Details

The previous sections have discussed all of the features of the algorithm which are
important in practice. There are, however, two points of theoretical interest which must be
mentioned at this point. Both concern situations which can arise in the process of iteration
carried out by the algorithm. Both occur so rarely, however, that in practice they can usually

be ignored.

a. Ties. In carrying out the algorithm, two or more rows or columns may have
identical moments. In this case it is necessary to resolve the tie to obtain an ordering so that
the algorithm can proceed. This is done by trying all permutations of non-identical rows (or

columns) and s&{ecting that particular row (or column) order which yields the highest value of

4. Note that a particular order and its reverse are considered identical and saved as the same order.

53



the correlation coefficient R.' If several permutations of the rows (or columns) have the same
value of R, the algorithm simply accepts the last order investigated. It should be noted that
ties, while prominent for small, binary (0-1), arrays, very rarely occur when dealing with large
arrays containing non-binary data.

b. Cycling. According to the definition of the algorithm, the iterative procedure is
continued until a stable state unchanged by either row or column operations (Fig. 24, for
example) is found. In fact, however, it is theoretically possible that, instead of arriving at such
a stable state, the algorithm may cycle between a small set of states. Fig. 26 illustrates the
phenomenon for a specially designed small array (in actual fact such cycling has only been
found in very much larger arrays).6 Once the algorithm arrives at the state shown in Fig. 26,
which it can reach from many other states, it will cycle forever L'etween a, b, c, and d, in that
order. Such an "infinite loop" itself represents a final state of the array. The procedure used
when such cycling is detected therefore is to terminate the iterations and take one of the
states involved in the loop as the solution.

a
A 9 1

B 5 0
C 3.5 2

D 0 1

Y 6

0 0
0 5
1 3.5
0 9

REORDER

ROWS

(b) a g 'Y 8

A 9 1 0 0
C 3.5 2 1 3.5
B 5 0 0 5
D 0 1 0 9

(

REORDER REORDER

COLUMNS COLUMNS

d) a y
A 9 0
B 5 0
C 3.5 1

D 0 0

l -13 -69 -2

0 6 -.0.... ( c) a v 0 8

1 0 REORDER A 9 0 1 0
0 5 ROWS C 3.5 1 2 3.5
2 3.5 B 5 0 0 5.0
1 9 D 0 0 1 9

FIGURE 26, Illustration of Cycling Phenomenon

In practice, this phenomenon has been observed only very rarely, and only in very large

arrays. Furtiermore, even when it does occur, it has been found that most often the algorithm

will find normal stable solutions when operating upon the same array from other starting
points. For this reason, this cycling, while theoretically quite objectionable, has been found to
be of little operational difficulty.

5. See Appendix H.
6. The symmetry and normalization inherent in the array of Fig. 26 are not necessary for the cycling to occur, but

were built in to simplify the array.

54



5. Computation Time

For an MxN matrix, M operations are required to compute each column moment and

N operations to compute each row moment. Therefore, for each iteration, the total number of

operations necessary to reorder the rows and columns is 2MN. Finally, if it requires I iterations

for the algorithm to converge, the total number of operations to reach a solution for each

random starting point is 2IMN. The computer time required on the CDC 1604 to solve a

particular 29x29 matrix was about 24 seconds f-,r one starting point; an 80x80 matrix took 4

minutes. Note that these times are influenced by the number of iterations required for

convergence as well as by the matrix sizes.

C. RESULTS

This section describes two problems investigated with the Moment Ordering Algorithm.

It demonstrates that the algorithm can in fact uncover a dominant relationship from the vast

amount of information in a matrix, and can produce orderings of the rows and columns which

reflect this relationship.

1. U.S. Senate Voting Patterns

The algorithm was used to study the relationships between the voting patterns of a

group of U.S. Senators. The hope was that, given only the recorded positions of Senators on a

random group of issues, the algorithm could generate a meaningful ordering. The first 20

Senators (alphabetically) in 1968 were chosen, and their recorded positions? on 12 issues were

tabulated (see Tables 4 and 5). The recorded position of the President on each issue was added

to the table, and the algorithm was applied to the resulting 21x12 array. The results, as shown

in Table 6, showed an ordering from conservative Republican and Southern Democrat at one

end to liberal Democrat on the other. To be sure that the strong ordering was not an accident,

the same type of array was constructed for 12 different roll calls (but the same 'Senators), and

the algorithm was rerun. The correlation between the two sets of results (see Table 6 again)

indicates that the ordering found was significant. The difference between the two rankings

does not, it is emphasized, reflect any inherent limitation upon the accuracy of the algorithm,

but rather is a result of the limited sizes of the samples of votes used in the analyses. If more

roll calls were added to the arrays, the results would approach each other more and more,

reflecting the enlarged and therefore improved sampling. The algorithm's solution in( cates

that, as might be expected, although a Senator's position on any given issue may not always be

7. As taken from tables in Congessional Quarterly Almanac, Vol. 24, 1968, pp. IS-58S.

55



T
ab

le
 4

. S
E

N
A

T
E

 R
O

L
L

 C
A

L
L

 V
O

T
E

S 
IN

C
L

U
D

E
D

 I
N

 A
N

A
L

Y
SI

S
a

R
O

L
L

 C
A

L
L

b

SE
N

A
T

O
R

c
A

R
R

A
Y

 1
A

R
R

A
Y

 2

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

1
Pr

es
id

en
t

0
0

1
0

.5
.5

1
0

0
1

1
1

.5
.5

.5
0

0
0

.5
1

.5
1

.5
.5

2
A

IK
E

N
0

0
1

0
0

0
1

1
1

1
1

0
0

1
0

0
0

0
1

1
0

1
0

0

3
A

L
L

O
T

T
0

1
1

1
1

1
1

0
.5

0
1

0
0

1
1

0
1

0
1

1
0

1
.5

0

4
A

nd
er

so
n

0
1

1
0

1
1

0
.5

0
0

1
1

0
.5

.5
0

0
0

0
0

1
1

.5
0

5
B

A
K

E
R

0
1

1
1

0
.5

1
.5

.5
0

1
0

0
1

1
0

1
0

0
1

1
1

0
0

6
B

ar
tle

tt
0

1
1

0
0

0
0

1
1

0
1

1
1

0
1

0
0

1
.5

0
1

1
1

.5

7
B

ay
h

0
1

1
0

0
1

0
1

C
r

0
1

1
0

0
0

1
0

1
1

0
1

1
.5

t.)

8
B

E
N

N
E

T
T

1
1

1
0

1
1

1
0

1
0

0
0

1
1

1
0

1
0

0
1

0
0

0
0

9
B

ib
le

0
.5

1
0

0
1

0
1

0
0

1
1

.5
1

1
0

.5
0

1
0

1
0

.5
0

10
B

O
G

G
S

0
1

1
0

0
0

1
0

1
0

1
0

0
1

1
0

1
1

1
1

0
1

0
1

11
B

re
w

st
er

0
1

1
0

0
0

0
0

0
1

1
1

0
0

0
0

0
1

1
0

1
1

.5
0

12
B

R
O

O
K

E
0

0
1

0
1

0
1

1
1

1
1

1
0

1
0

1
0

0
0

1
0

1
0

1

13
B

ur
di

ck
0

0
1

0
1

0
0

1
0

0
1

1
0

0
0

1
0

1
1

0
1

0
1

0
14

B
yr

d,
 J

r.
1

1
0

0
0

1
1

0
1

0
0

0
1

1
1

0
1

1
0

1
0

0
0

0
15

B
yr

d
1

1
0

0
0

1
0

1
1

1
0

1
1

0
1

0
0

1
0

0
1

0
0

0
16

C
an

no
n

0
1

1
C

1
1

0
0

0
0

0
1

1
1

1
0

0
0

1
0

1
1

1
0

17
C

A
R

L
SO

N
1

1
1

.5
0

1
1

0
1

0
1

0
0

1
1

0
1

0
0

1
.5

.5
0

0
18

C
A

SE
0

0
1

0
0

0
1

1
0

1
1

1
0

1
0

0
0

0
1

0
1

1
0

1

19
C

hu
rc

h
0

1
1

0
1

G
0

.5
0

0
1

1
0

0
1

1
0

1
1

0
0

0
0

0
20

C
la

rk
0

0
1

0
0

0
0

1
0

1
1

1
0

0
0

1
0

1
1

0
1

1
1

1

.2
1

C
O

O
PE

R
1

0
1

0
0

0
1

0
1

1
1

0
.5

0
1

1
1

1
0

1
.5

1
0

1

a
In

fo
rm

at
io

n 
fr

om
 C

on
gr

es
si

on
al

 Q
ua

rt
er

ly
 A

lm
an

ac
, V

ol
_ 

24
, 1

96
8,

 p
p.

 1
5S

-5
8S

.
1 

=
 a

 p
os

iti
on

 in
 f

av
or

; .
5 

=
 n

o 
re

co
rd

ed
 p

os
iti

on
; 0

 =
 o

pp
os

iti
on

.
b

Su
bj

ec
ts

 o
f 

ro
ll 

ca
lls

 id
en

tif
ie

d 
in

 T
ab

le
 5

.
c

R
ep

ub
lic

an
s 

in
 c

ap
ita

l l
et

te
rs

.



Table 5, ARRAYS USED IN SENATE VOTE PATTERN ANALYSIS4

Vote
No,

Rol lb
Call Vote Subject Matter Sponsor

1 10 33 - 58 Amendment to open housing bill to bar federal courts from impairing title to real

property as recorded under state recording statutes.

Ervin

2 20 62 - 21 Amendment to open tiousing bill to punish anyone instructing in the use of fire-

arms for riots, or interfering with police during a riot.

Long

3 30 61 - 19 Amendment to open housing bill to provide a compromise bill. Dirksen

4 40 19 - 58 Amendment to gold cover removal bill to limit expansion ofFederal Reserve

notes in circulation to 4% per year.

Allott

5 50 43 - 28 Amendment to Standards of Conduct Resolution to allow use of political

contributions for certain office expenses.

Yarborough-
Javits

6

7

60

70

38 - 44

53 - 35

Amendment to excise tax extension bill to provide 20% surtax on people
trading with Communist nations which upply North Vietnam,

Amendment to excise tax extension bill to impose 10% income tax surcharge

and limit expenditures to $180 billion.

Mundt-
Byrd (Va.)

Williams-
Smathers

8 80 28 - 30 Amendment to Military Procurement Authorization to cut R&D funds from Hart

$7.9 t' ;7.4 Nihon.

9

10

90

100

39 - 29

29 - 53

Amendment to Conservation Fund bill to remove outer continental shelf

revenues from fund for 1972 and 1973,

Amendment to Omnibus Crime Bill to prohibit interstate mail order sales

of rifles and shotguns.

Williams

Lennedy

11 110 51 - 30 Amendment to Omnibus Crime Bill to delete language denying Supreme Court
jurisdiction to review state coort judges' decisions to admit eyewitness testimony

in evidence.

Tydings

12

13

14

120

127c

I 37c

33 - 44

25 - 35

42 - 27

Amendment to Omnibus Crime Bill to allocate 2,3 instead of 85% of funds in

block grants to states,

Amendment to require cities as well as states to reimburse N1DC for costs of

riot losses insured by N1DC,

Amendment to delete section on retirement benefits from bill to extend term

of office of bankruptcy referees.

Brooke

Russell

Carlson

15

16

150

160

44 - 32

16 - 61

Motion to table amendment which would have provided $52 million supple-

mental appropriation to Labor Department for summer jobs,

Amendments to Military Construction Authorization to cut Navy and Air

Holland

Clark

Force funds by 10%.

17 170 34 - 38 Amendment to juvenile delinquency bill 'to allocate all funds as block grants to

states.

Murphy

18 180 34 - 52 Amendment to Federal Agency Authorization to cut NASA R&D funds an

additional $300 million.

Williams

19

20

190

200

30 - 40

46 - 45

Amendment to Agricultural Act to limit to $75,000 payments to one producer

for participation in certain agricultural programs,

Amendment to Interest Rates Bill to strike out language authorizing Federal

Williams

Bennett

Reserve banks to purchase obligations directly from federal agencies.

21 21Ic 51 - 22 Amendment to strike out language added by House which limited expenditures

of State, Justice, and Commerce to $1.98 billion.

Committee

22 22Ic 46 - 28 Foreign Aid Authorization MI.

23 230 23 - 35 Amendment to Renegotiation Act to exempt Renegotiation Board from

employee limitations.

Proxmire

24 240 31 - 53 Amendment to Gun Control Act to add a registration provision. Brooke

a Information is taken from the Congressional Quarterly Almanac, (Vol. 24, 1968), pp. IS -58S.

b The first 12 roll calls above are included in the first array, the second 12 in the second array.

c When a roll call selected was too one-sided to convey significant information, a roll call close in time to it was substituted.

57



Table 6. RESULTS OF VOTE PATTERN ANALYSISI

Order

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

a See Tables 4 and 5 for input data.
bRepublicans in capital letters.

Array 1 b Array 2b

Burdick Burdick

Clark Bayh

Church Clark

Brewster Brewster

Bible Church

CASE Bartlett

Bayh Byrd (W.Va.)

Anderson Anderson

Bartlett CASE

President Cannon

BROOKE COOPER

Cannon BROOKE

AIKEN Bible

Byrd (W.Va.) President

ALLOTT BOGGS

BAKER AIKEN

BOGGS ALLOTT

COOPER Byrd (Va.)

BENNETT BAKER

CARLSON .CARLSON

Byrd (Va.) BONNETT

58



predictable, overall voting patterns based upon ideology are strongly evident, and Senators can

be placed reasonably well on a liberal-conservative spectrum. More important, for our

purposes, it indicates that when a meaningful ordering is inherent in a set of data, the

algorithm will find that ordering.

2. Chronological Ordering in Archaeology

The algorithm was used to attempt to order a series of archaeological deposits. The

basic data available is the distribution of various types of pottery (eight, in this case) among

various deposits of archaeological interest (also eight, in this case). Robinson (Ref. 30), upon

whose work this example is based, hypothesized that it should be possible to arrange these

sites into a proper chronological order by assuming that pottery types come into and go out of

general use in a regular mariner over time, and that, therefore, deposits similar to each other in

the amounts of various types of pottery will be close to each other in time as well. Thus, if a

satisfactory one-dimensional arrangement of the pottery deposits can be found, on the basis of

a pottery-type percentage may, the sites should be chronologically ordered. This was

therefore used as a test of the Moment Ordering Algorithm.

The raw data matrix presented by Robinson in Ref. 30 is shown in Table 7, If the

algorithm is performed on this array, the solution found is 3A, 2A, 3B, 1A, 3C, 2B, 1B, 2,C,

which is very close to that presented by Robinson, and which satisfies the tests he carries out

on his candidate solution.

Table 7. RAW POTTERY PERCENTAGES

Pottery
Type

Deposit
2A 2B 2C 1A 1B 3A 3B 3C

1 24.0 1.4 0.2 11.3 0.3 29.6 54.3 0

2 66.8 0.9 0 0 0 0 3.5 0

3 1.3 0 0.2 3.8 0.2 14.1 14.0 6.6

4 0 0 0 1.3 0.2 0 1.8 3.3

5 0 0 0 3.3 0.5 0 5.3 5.5

6 4.0 0 0 24.9 1.4 7.0 7.0 27.5

7 0 97.7 99.3 52.6 97.4 0 12.3 57.1

8 3.9 0 0.3 2.8 0 49.3 1.8 0

59



Robinson, however, introduces an "agreement coefficient" between two pottery types,
defined arbitrarily as:

N
aij = 200 - E I Pak Pjk where there are N sites,

k = 1

and Pik and Pik are the percentages of types i and j in site k. Therefore, aij = 200 constitutes
total agreement between the composition of two sites, aij = 0, total disagreement. Robinson's
resulting array is presented in Table 8. Robinson then attempts to carry out a "rearrangement"
of this array to drive large numbers toward the diagonal; he describes a semi-systematic manual
method of doing so and presents the resulting order as his solution. The Moment Ordering
Algorithm was run on Table 8 and found exactly the same order as Robinson's method-2A,
3A, 3B, 1A, 3C, 1B, 2B, 2C. The reordered matrix of agreement coefficients is shown in Table
9, where it is apparent that the larger matrix elements have accumulated around the main
diagonal of the array. The advantage obtained in using the algorithm, of course, lies in the fact
that it is an automatic, systematic approach and does not require personal judgments to be
made, as Robinson's method did. The fact that it reproduces Robinson's chronological
ordering reinforces the belief that the algorithm is suitable for just this problemordering
entities in one dimension based on their interrelationships.

Table 8. AGREEMENT COEFFICIENTS

Pottery
Deposit

Pottery Deposit
2A 2B 2C 1A 1B 3A 3B 3C

2A 200 5 1 39 4 66 69 11

2B 5 200 196 108 195 3 29 114
2C 1 196 200 107 196 1 26 115
1A 39 108 107 200 110 50 82 172
1B 4 195 196 110 200 4 30 119
3A 66 3 1 50 4 200 101 27
3B 69 29 26 82 30 101 2)0 66
3C 11 114 115 172 119 27 66 200

60



Table 9. REORDERED AGREEMENT COEFFICIENTS

Pottery Pottery Deposit
Deposit

2A
3A
313

IA
3C
1B
21/
2C

2A 3A 3B 1A 3C 1B 2B 2C

200 66 69 39 11 4 5 1

66 200 101 50 27 4 3 1

69 101 200 82 66 30 29 26
39 50 82 200 172 110 108 107
11 27 66 172 200 119 114 115
4 4 30 110 119 200 195 196
5 3 29 108 114 195 200 196
1 I 26 107 115 196 196 200

61



III. THE MOMENT COMPRESSION ALGORITHM

A. INTRODUCTION

The Moment Compression Algorithm discussed in this chapter is based upon the key
observation that the distinguishing feature of a matrix in perfect block form, (see sketch) when
contrasted with the same matrix after row or column permutations, is that the moment of
inertia of each row and column about its mean is minimized: any row or column permutation
of a matrix in perfect diagonal block form will "expand" a block and make it less dense,
thereby increasing the matrix's summed moments of inertia.

Consequently a procedure which minimizes, by row and column permutations, the
sums of the row and column mean square moments about their means will drive the matrix

into perfect block form if this is possible.' ,2 If this is not possible, the procedure will still tend

to produce a pleasing pattern because it tries to create dense blocks. This reasoning led to the
development of the Moment Compression Algorithm.

Although Moment Compression has been superseded by Bond Energy both as a
theoretical ME and as a computational procedure, this material is being presented both to
indicate an approach which was explored and found impractical, and to show a logical
stepping-stone in the development of the Bond Energy Algorithm. Moment Compression was
historically important for four reasons:

1. Ambiguity will still exist because

A,

and

C

will be considered equally good. But one would be indifferent to such ambiguity as long as the variables have been factored
correctly.

2. This assertion is proved in Appendix C.
63



(1) It was our first attempt3 to describe the appeal of a pattern in terms of

a quantitative ME, the sums of the moments of inertia. This was
motivated by a desire to produce dense blocks of numbers.

(2) It was our first attempt to devise an algorithm based on ME-
optimization. This was in contrast to heuristic algorithms, such as

moment ordering and some similarity matrix approaches, where it was

not clear what each step in the algorithm was trying to accomplish. In

particular, rigorous optimization of the ME would avoid the problems

of cycling and non-uniqueness4 experienced in the Moment Ordering

Algorithm.

(3) It was our first attempt to devise algorithms which find near-optimal,

rather than optimal, solutions for the ME. The major pitfall encoun-

tered in the Moment Compression case, but not in the Bond Energy

case, was that the approximate algorithm was slows and poor.6

(4) It used an ME which decomposed into two parts, one (sum of the row
moments) dependent only on column permutations and the other (sum
of the column moments) dependent only on row permutations. Conse-
quently optimization of the ME could be achieved in exactly two
passes, one finding the optimal column permutation, the other finding
the optimal row permutation. These two passes are carried out com-
pletely independently of each other, and in particular, it is not
necessary to alternate between row and column permutations, as in the

Moment Ordering Algorithm. This decomposition of the ME into two

parts was an attractive feature later used in the Bond Energy ME

(row-bonds and column-bonds being optimized separately).

3. Dr. Gould had earlier suggested use of the matrix correlation coefficient as a guide to the performance of the
Moment Ordering Algorithm, but there was no particular pattern that one hoped to drive the matrix into.

4. Cycling can never occur in an algorithm which iteratively optimizes an ME, for the ME is monotone from one
iteration to the next. There would still be non-uniqueness if a few permutations achieved the global optimum; this could be
expected only in degenerate cases, and normally would not Occult. Permutations achieving local (rather than global) optima of
the ME could be discarded on the basis of their inferior MEs, so that many fewer "stable" solutions could be expected than in
the Moment Ordering Algorithm.

5. At least a factor of three slower than the Bond Energy Algorithm, and therefore impractical for problems larger

than about 25x25.
6. While the algorithm is always successful at putting a matrix into near block diagonal form, if this is possible, it had

two major weaknesses of (1) sensitivity of the result to the starting point, and (2), an inability to handle the checkerboard case,
shown in lig. 6.

64



B. MEASURE OF EFFECTIVENESS FOR MOMENT COMPRESSION

As stated above, the measure of effectiveness for Moment Compression is the sum of
the mean-square7 column moments and mean-square row moments. For any NxM non-
negative matrix (bii), the ME is

N M
ME(b) = E + E 9

i =1 j =l

where ri is the row moment for the ith row:

r.(b) = r. =
M

=1
bid

k 1

j

E bin

bilk 2

n = 1

and c. is the column moment for the jth column:

c. =

M

m =1
b.

IA k =Ni bkjk

i= i
-y

1nN= 1 bni

2

b

M
E braid

r= 1

Let A = aid be the original NxM non-negative matrix and let [b..] = , it
denote the matrix whose jth column is the ir(j)th column of A, where it = 1 it ( 1 ), v. (2), . . , ir(M)

denotes a permutation of 11, 2, . . . ,M . The problem of finding the best column permutation
of A is given by

7. While any even moment can be used, the second moment is the simplest.

65



r

where

min
7r

N

i= 1
ri(b)

M
min E ()kir (j)7r(k)

7r jk = 1

N airj2 Sik airaisik
Qjkrs = E

w.i = 1 Wi
l< jkrs < M

M
and wi = E a.. denotes the row sum for the ith row.

j = 1

Finding the best row permutation leads to a problem completely analogous to that of finding

the column permutation.

The above problem involves a minimization over all M! possible permutations. It is

called a quadratic assignment problem because of the double appearance of 7r in the minimand.

The problem a ME optimization is consequently equivalent to solving two quadratic assign-

ment problems. (Appendix A demonstrates that the same holds true for the Bond Energy ME.)

As discussed in Appendix A, exact algorithms for solving quadratic assignment prob-

lems are too time consuming to be practical for M larger than 15 or 20. Consequently, an
approximate algorithm was employed to find a near-optimal solution. The approximate

algorithm is a gradient search in M2-dimensional space, and is described in the next section.

C. GRADIENT ALGORITHM FOR APPROXIMATE ME-OPTIMIZATION

The minimization problem posed above can be rewritten as

min

XePM

Z(X)

(where PM denotes the set of all M! possible MxM permutation matrices i,e., all matrices of the

)form Xij = 8j, 7r(i) \ and where

66



F.

I

M

Z(X) = E n x. 3(-jkrs- -Jr- -ks = (B,X) + (X,C,X)
iijkrs =1

(B,X) =E R .jjk-Xik =

Iii aiki2
Xjk

k = 1 jk=1 l=1 wi

M M

jkrs = 1 jkrs = 1 [-il1 wi2

M M N aikaisjr
(X,C,X) = E XjkXrsCjkrs = E

Note that C is negative semi-definite:

(y,C,y) < o for any MxM matrix y.

XjkXrs

The gradient search was motivated by a paper by Denfianov (Ref. 23) Exploiting the

quadratic dependence of Z and the negative-definiteness of C, one writes

Z(X) = Z(X°) + (X-X°, grad Z(X°)) + (X-X°,C,X-X°)

where the last term is non-positive and where

M
grad Z(X °)jk = Bik + 2 Ecjkrs X°rs

rs = 1

Consequently if X is chosen to minimize (X, grad. Z(X°)), one finds Z (X) < Z (X°), with

equality usually implying that X° is local minimum of Z.8 The following gradient algorithm is

the result:

Step 1. Select an initial permutation matrix X°1d.

Step 2. Compute grad Z(X°1d).

Step 3. Solve min '(X, grad Z(xoldN\)) for the minimizing permutation matrix
XcPM

xnew.

Step 4. If Xnew * xold, set X°1d = Xnew and return to Step 2; if Xnew =

xold, stop.
The algorithm converges to a permutation matrix which generally is a local minimum of Z(X).8

The time consuming portion of the algorithm is Step 3. The minimization in Step 3 is

8. The basic property is that if (X-X°, grad Z(X°))> 0 for all permutation matrices X, and if (X-X°, C,X-X°) = 0 for
all X for which there is strict equality, then X° is a local minimum for Z(.), where the domain of Z is now extended to the set

of all doubly stochastic matrices.

67



min
M

= 1
E grad Z(X°)

where it ranges over all permutations of 11,2, . . . , M .

This class of problems is known as linear assignment problems and is most readily solved by

the so-called Hungarian method (Ref. 32)1. Unfortunately, the labor for the Hungarian method

is proportional to M3 or M4, and since several linear assignment problems must be solved, the

computation time for this gradient algorithm turns out to be excessive for large M.

D. COMPUTATIONAL RESULTS

The gradient algorithm described above was coded in order to provide near-optimal

solutions to the Moment Compression problem. The gradient algorithm is used twice; once to

minimize the sum of the row moments and again for the column moments. The major

computational effort goes into solutions of successive linear assignment problems.

The primary advantages of the gradient algorithm are its simplicity and (as the

following two examples illustrate) its excellent capability for putting a matrix into near

block-diagonal form when this is possible. The primary disadvantage is the large computer time

(a factor of three greater than for the Bond Energy Algorithm), rendering the method

impractical for matrices larger than about 25x25.

The excessive computational effort arises from two sourcfxi. One is the need to solve

successive linear assignment problems, each of which is time consuming. The second is the

existence of several local minima for Z(X), with the consequence that the final data ordering is

somewhat sensitive to the initial data ordering. (The Moment Ordering Algorithm has similar

properties.) It therefore is necessary to start the algorithm at several randomly-selected initial

permutations in order to achieve a final permutation for which Z is close to its global

minimum. The need for multiple starts increases the computational effort many-fold.

1. First Example

A 16x16 example from Ref. 33 was solved with the gradient algorithm for moment

compression. In this example, the 16 most frequently occurring non-trivial words have been

extracted from a long conversation. The input matrix, A-1, is shown in Fig. 27. A "1" is placed

in row i and column j if words i and j have coincidentally occurred in two or more sentences,

and a "0" is placed there otherwise.

68



IA
V) I-

V) L.) 011
Z LLI Gen

ci.. 0 v) < ce < Z 5 "
1k./LLI .7") CZ LLI LLI w:I en co 1 a- a I X U

91
LiJz.> Li -I

LA PS

BED

BUS

TRACK
PERFUME
BEACH
TENNIS
HOTEL
COURT
MOUNTAIN
CLUBHOUSE
HOT
SWIM
VIEW
FIELD
LEG
II-I3-69-5

1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1

1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1

0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0

0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1

1 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1

0 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0

0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1

1 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1

1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1

0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0

0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1

1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1

0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 1 0 1 0 1 0 1 0 1 0 1 1

1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1

FIGURE 27. Initial Word Relationship Array, Matrix A-1

Since the input matrix is symmetric, the problems of choosing permutations to

minimize the row or column moments are identical. It sufficed to find the optimal column

permutation, and to use this permutation on both the rows and columns of the matrix. The

problem of row moment minimization was solved 40 times, etch time starting from a
randomly chosen permutation of the columns. Two solutions are taken as identical if ft.1,

differ merely by reversal of the order of the 16 words.

The results were as follows. Nine of the 40 starting-points led to the final matrix, A-2,

shown in Fig. 28, with the lowest ME. An additional 11 of the 40 starting-points led to a final

matrix (with the same ME) which differed from A-2 only by interchanging of the variables

69



O

C
D 0 0- C
D 0 a C
D 0 In In

X
lfr

il.
1=

74
m

O
rn

i;4
71

-3
00

E
1b

-T
r7

nz
co

o
2

g r-
Z

-I
cr

)
2e

...
.= 0

4
3
: m

-4
C

>

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
-
-
a
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

- -
0
0
0
0
0
0
0
0
0

0 
0 

0 
0 

0 
0 

0 
0 

o

el
 e

l e
l e

l e
l

C
)

ol
aw

d
el

el
 e

l

.
a
 
.
.
.
a

.
.
.
a

.
.
.
a

el
l e

l
C

)

el
 e

l *
...

1 
em

l

el
 e

l e
l d

 e
l

el
 e

l

m
=

=
l1

 d
 m

=
=

l1
o=

=
11

=
.1

1

el
 d

 e
l e

l

el
 d

 e
l e

l e
l

00
00

0 
0 

0 
0

00
00

00
00

00
00

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

0
0
0
0
d
d
C
O
C
D

V
IE

W

B
E

A
C

H

M
O

U
N

T
A

I N

B
U

S

H
O

T

H
O

T
E

L

LI
P

S

P
E

R
F

U
M

E

B
E

D

C
O

U
R

T

LE
G

F
IE

LD

S
W

IM

C
LU

B
H

O
U

S
E

T
E

N
N

IS

T
R

A
C

K

=
4

tn
-
1
1
 
(
I
 
-
4
 
r
-
 
f
l
 
W
P

:
C
 
C
O
 
C
O
 
4
C
 
3
:

r
n
i
-
7
-
4
1
-
'
r
n
O
m
°
7
3
m
0
0
7
1
:
-
C
i
;

o
C
:
 
>
 
0

0
Ln

7°
tn

-
n
 
-
-
1
-I

n
Z

0c
'n

72c
c

m
c

I-
-

71
m

 7
C

_1
0

m
--

I
C

>
c.

n m
z

C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D
 
-
-
I

C
D
 
C
D
 
C
D
 
S
I
 
C
D

C
D
 
C
D
 
C
)
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
0
 
C
D
 
C
D

C
D
 
0
 
C
D
 
C
D
 
C
D

en
d 

m
od

e/

.
.
.
a

.
.
.
a

M
O

U
N

T
A

IN

V
IE

W

B
U

S

B
E

A
C

H

C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
7
I

0
el

H
O

T
E

L

H
O

T
1

C
D
 
C
D
 
C
D
 
C
D
 
C
D

C
D
 
C
D
 
C
D
 
C
D

P
E

R
F

U
M

E

C
D
 
C
D
 
C
D
 
C
D
 
C
D

.
.
.
a

.
.
.
a
 
d
 
=
d
i
0
0
0
0

LI
P

S

C
D
 
C
D
 
C
D

C
D

0
0
0
0

B
E

D

C
D
 
C
D
 
C
D
 
C

C
O

U
R

T

go
=

i
el

el
 e

l
el

el
 e

l
C
D
 
C
D
 
C
D
 
C
D

LE
G

ea
te

 e
l e

l
el

el

00
0 

0
0 

0 
0 

0 
0

0
0 

0
-1

 0
 0

 0
T

R
A

C
K

C
LU

B
H

O
U

S
E

.
a
 
d
 
d

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

F
IE

LD

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

S
W

IM

.
o
 
.
a
 
d
 
a

C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D
 
C
D

T
E

N
N

IS



"bed" and "lips". Since these two variables have identical rows and columns, it is under-

standable why ambiguity arises about their ordering.9

Inspection of Fig. 28 shows that the algorithm has partitioned the 16 words into three

subjects: vacation, sex, and sports. The transitional words between these three topics of

conversation are evidently hotel, hot, court, and leg.

All remaining 20 starting-points led to a ME which was at least 11 percent higher.2°

Inspection of the next-to-best permutation (the one with an ME 11 percent higher than that

of matrix A-2) showed that the gradient algorithm converged to the wrong local minimum of

Z(X), in which only one of the three topics of conversation (sports) is clearly identified.

It is believed that Matrix A-2 (aPd the variations obtained by permuting identical rows)

achieves the global optimum of Z(X), although this is not certain. It must be recalled, however,

that the primary goal is the discovery of informative patterns, not rigorous optimization of the

ME. For exams L, the rearrangement proposed by Giuliano, Matrix A-3 in Fig. 28, is just as

pleasing as A-2, even though its ME is not as good. The point here is two-fold: (1) data

rearrangements with near-optimal ME may be as pleasing as those with optimal MEs; (2)

ME-optimization algorithms can fail to identify all informative patterns, especially patterns

which are not local optima for the ME.11

The Moment Compression Algorithm is considered to have worked properly on this

example because it produced a pleasing pattern. The sensitivity of the gradient algorithm to

the starting point was not a serious problem, for 20 of the 40 starts led to a good answer.

Note, however, that a mere 11 percent degradation in the ME led to a seriously degraded

pattern.

The main criticism of the gradient algorithm for Moment Compression is its excessive

computation time. Each usage of the algorithm required 3 to 7 gradient steps (i.e., solutions of

3 to 7 linear assignment problems) at about 2 seconds per step. The algorithm therefore

required about 10 seconds per starting point.12 Since 40 starting points were chosen, at

random, to ensure high confidence in achieving a global rather than local optimum,13 7

minutes" were required to solve this problem.

9. It should be pointed out that this example exhibits considerable degeneracy. Examination of Fig. 33 reveals that

rows 7-9, rows 10-11, and rows 14-16 are identical. The ME will be invariant under permutations of identical rows. In
addition, rows 1-4 and rows 5-6 are nearly identical; the ME will undergo only minor changes if these are interchanged.

10. The ME is here defined as the root-mean-square row moment,

1

16

ME =/ ri
i = 1

16

11. Since the starting points never led to A-3, A-3 probably is not a local minimum for Z(X).
12. By contrast, the Bond Energy Algorithm requires ohly a few seconds per starting point.
13. By contrast, the Bond Energy Algorithm is rather insensitive to the starting point, so that fewer starting points (at

most 16, and probably much less) need be explored.
14. On CDC 1604.

71



It may be possible to cut the running time by a factor of 2 or 4, since a "good" starting
point may require fewer gradient steps than a randomized one, and by using much fewer than

40 starts. Nevertheless, the running time for a 16x16 problem (on the order of minutes, and
doubled if the matrix is not symmetric) is disappointing when contrasted with the running
time for the Bond Energy Algorithm. Consequently the gradient algorithm for Moment

Compression Algorithm is probably impractical for problems larger than 25x25 or so. It works

well, but is too slow.

2. Second Example"

A second example was run in order to test the ability of the gradient algorithm to
generate clumps of large numbers when the matrix elements were not restricted to 0 or 1. The

initial matrix is the 10x10 matrix denoted as B-1 in Fig. 29. Since B-1 is symmetric, it sufficed

to find the optimal row permutation, and to use this permutation on both the rows and

columns of B-1.

ABCDEF GNI
A 5 4 1 0 4 1 1 0 3 1

B 4 5 0 1 3 1 1 0 4 1

C 1 0 5 0 1 3 3 0 1 2
D 0 1 0 5 0 0 0 4 0 1

J., 4 3 1 0 5 1 0 0 4 1

F 1 1 3 0 1 5 3 0 1 3

G 1 1 3 0 0 3 5 0 1 2
H 0 0 0 4 0 0 0 5 1 0
1 3 4 1 0 4 1 1 1 5 1

1 2 1 1 3 2 0 1 5
11-13-69-6

FIGURE 29. Initial Similarity Matrix B-1

The gradient algorithm was used with 60 randomly chosen starting points. Four
distinct MEs16 were obtained, with values 1.846, 1.987, 1.988, and 2.314. The frequency of

15. This is the same example as in Figs. 7 and 8.
16. The ME is here defined as the root-mean square row moment-arm,

ME =j E1
10

10 i =1
ri

72



these MEs were, respectively, 36, 12, 8, and 4 (sum of 60). The matrices corresponding to the
four MEs (the best four permutations17) were respectively, B-2, B-3, B-4, and B-5 and are
shown in Fig. 30. These four MEs are fairly close to one another and it is apparent that the
patterns in B-2, B-3, B-4, and B-5 are essentially equivalent and equally pleasing; all four
matrices succeed in identifying a 2x2 block of large numbers (variables H and D), a 4x4 biock
(variables A, B, E, and I) and a 4x4 block (variables C, F, G, and J). The exact order of the
blocks, and of variables within each block differ, but one would be indifferent to such
unimportant differences (i.e., to the arrangement of the stray 1's) since the identification of
the blocks of primary blocks is what is significant.

The computation time for this problem was about 3 seconds per starting point. The 60
starting points consumed about 3 minutes total computation time".

Summarizing, the gradient algorithm applied to this problem succeeded, in all 60 of the

starts, in identifying the major variable binsks aiid produced informative patterns. The four
best permutations produced pearly equal MEs and equally informative patterns, without any
obvious way of choesilig among them. The algorithm is considered successful, but rather slow,
for this problfrki. It correctly "factored" the main variables, but was very time-consuming
compared with the Bond Energy Algorithm.

1.1

17. Two permutations were considered equivalent if each could be obtained from the other by merely reversing the

order of the 10 rows and columns.
18. On CDC 1604 computer.

73



H DB I EAJ FGC HDJGCF I BAE
H 0 1 0 0 0 000 H 0 1 0 0 054 54000
D 45 10001000 D 45100 0 0 1 0 0

B 0 1 54341110 J 01 52 23 1 1 1 1

O 1 0 45431111 00 25 33 1 110
0 0 34541101 C 00 23 53 1011

A 0 0 34541111 F 00 33 35 1111
J 0 1 1 1 1 1 5 3 2 2 I 101111 5434
F 0 0 1 1 1 1 3 5 3 3 B 0111011 4543

0 0 1 1 0 1 2 3 5 3 A 001111 3454
C 0 0 0 1 1 1 2 3 3 5 E 001011 4345

Matrix B-2 Matrix B-4

HDGJCF BAE GCFJDH I ABE
H G 0 0 1 1 1 05400001000 5332
D 45010 0 0 100 C 3532 0 0 1 1 0 1

G 0052331110 F 3353 0 0 1 1 1 1

J 0 1 2 5231111 J 2235 1 0 1 1 1 1

C 00 3 2531011 D 000 54 0010
F 0 0 3 3 3 51111 H 0000 45 1000
I 10 1 1 115434 I 1111 0 5344
B 0111014543 A 1111 00 3544
A 0011113454 B 1011 10 4454
E 0001111 4345 E 0111 00 4445
11,.13-69-9 II-13-69-10

Matrix B-3 Matrix B-5

FIGURE 30. Reordered Similarity Matrices

74



REFERENCES

1. Ball, G.H., "Data Analysis in the Social Sciences: What About the Details?,"

Proceedings - Fall Joint Computer Conference, pp. 533-559, 1965.

2. Ball, G.H. and Hall, D.J., "ISODATA, an Iterative Method of Multivariate Analysis and

Pattern Classification," presented at the Proceedings of the International Communica-

tions Conference, Philadelphia, Pa., June 1966.

3. Bonner, R.E., "On Some Clustering Techniques," IBM Journal, Vol. 22, pp. 22-32,
1964.

4. Parker-Rhodes, A.F. and Needham, R.H., "The Theory of Clumps," (Cambridge,
England: Cambridge Language Research Unit), 1960.

5. Needham, R.M., "The Theory of Clumps II," (Cambridge, England: Cambridge
Language Research Unit), Report M.L. 139, 1961.

6. Ward, J.H. and Hook, M.E., "Application of a Hierarchal Grouping Procedure to a
Problem of Grouping Profiles Educational and Psychological Measurement," pp. 69-82,

1963.

7. Dale, A.G. and Dale, N., "Some Clumping Experiments for Information Retrieval:

LRC 64-WPI 1," (Austin: Linguistics Research Center), February 1964.

8. Edwards, A.W.F., "A Method for Cluster Analysis," Biometrics, Vol. 21, pp. 372-375,

1965.

9. "Some Clumping Experiments for Associative Document Retrieval," American
Documentation, pp. 5-9, 1965.

10. Ihm, P., "Automatic Classification in Anthropology," Use of Computers in Anthro-

pology, Morton and Company, 1965.

75



11. Fortier, J.J. and Solomon, H., "Clustering Procedures," Proceedings of the Inter-
national Symposium on Multivariate Analysis, pp. 493-506, New York, Academic
Press, 1966.

12. King, B., "Step-Wise Clustering Procedures," Tow aal of the American Statistical
Association, Vol. 62, pp. 86-101, 1967.

13. Jones, K.S., "Current Approaches to Classification and Clump Finding at Cambridge
Language Research Unit," 93351, Computer Journal, Vol. 10, p. 29, 1967.

14. Hartigan, J., "Representation of Similarity Matrices by Trees," Journal of American
Statistical Association, Vol. 62, pp. 1140-1158, December 1967.

15. Sokal, R.R., Principles of Numerical Taxonomy, W.H. Freeman and Company, San
Francisco, 1963.

16. Johnson, S.C., "Hierarchical Clustering Schemes," Psychometrika, Vol. 63, pp.
241-254, 1967.

17. Harrison, P.J., "Method of Cluster Analysis and Some Applications," Applied
Statistics, Vol. 17, No. 3, pp. 226-236, 1968.

18. Nagy, G., "Pattern Recognition," Proceedings of the IEEE, Vol. 56, p. 836, 1968.

19. MacQueen, J., "Some Methods for Classification and Analysis of Multivariate
Observations," Proceedings 5th Berkeley Symposium on Statistics and Probability pp.
281-197, 1967.

20. Oxnard, Charles E., "The Combined Use of Multivariate and Clustering Analysis in
Functional Morphology," Journal of Biomechanics, Vol. 2, pp. 73-88, Pergamon Press,
1969.

21. Gilmore, "Optimal and Suboptimal Algorithms for the Quadratic Assignment
Problem," Journal of the Society of Industrial and Applied Mathematics, Vol. 10
(1962), pp. 305-313.

22. Lawler, "Quadratic Assignment Problem," Management Science, Vol. 9 (1962), pp.
586-599.

76



23. Dem'ianov and Khudiakov, "Solution of an Integer Problem of Quadratic Pro-
gramming," Applied Math, and Mechanics, Vol. 29 No. 1 (1965), pp. 170-174.

24. Gilmore (Ibid).

25. Whinston and Graves, "An Algorithm for the Quadratic Assignment Model," Working
Paper 110, Western Management Science Institute, UCLA, (revised 1968).

26. Pierce and Crowston, "Tree-Search Algorithms for Quadratic Assignment Problems,"
Working Paper 389-69, Sloan School of Management, M.I.T. (1969).

27, Hiller and Connors, "Quadratic Assignment Problem Algorithms and the Location of

Indivisible Facilities," Management Science, Vol. 13 (1966), pp. 42-57.

28. Seal, Hilary L., Multivariate Statistical Analysis for Biologist, John Wiley & Sons, 1964.

29. Ahmed, R., and Agrawal, S., "Significant Features in the Perception of (Hindi)
Consonants," Journal of the Acoustical Society of America, Vol. 45, No. 3, (1969).

30. Robinson, W.S., "A Method for Chronologically Ordering Archaeological Deposits,"
American Antiquity, Vol. 16, p. 293, 1951.

31. Bellmore, M. and Nemhauser, G.L., "The Traveling Salesman Problem: A Survey,"
Operations Research, Vol. 16, No. 3, May-June 1968.

32. James Munkres, "Algorithms for the Assignment and Transportation Problems,"
Journal of the Society of Industrial and Applied Mathematics, Vol. 5 (1957), pp.
32-38.

33. Vincent Giuliano, "How We Find Patterns," International Science and Technology,
February 1967, pp. 40-51.

77



APPENDIX A

FORMULATION OF THE BOND ENERGY ME OPTIMIZATION

AS TWO QUADRATIC ASSIGNMENT PROBLEMS

79



FORMULATION OF THE BOND ENERGY ME OPTIMIZATION

AS TWO QUADRATIC ASSIGNMENT PROBLEMS

The purpose of this Appendix is to show how the problem of ME maximization can be

rigorously formulated and solved as two Quadratic Assignment Problems (QAPs). This form-
ulation is presented only for theoretical interest, because published algorithms (Refs. 21, 22,
23) which find truly optimal solutions to QAPs are too time consuming to be practical for
large problems.' While approximate algorithms have been published' (Refs. 24, 25, 26, 27)
which find near-optimal solutions to QAPs, it was not believed worthwhile to explore any of
them, because none exploited the nearest-neighbor feature of the function being optimized.
Only the sequential-selection approximate algorithm described in this paper exploits the
nearest-neighbor feature, and this latter algorithm is believed to be much faster, more
convenient, and just as satisfactory' as the published approximate QAP algorithms.

Suppose the original non-negative matrix [aij ] is M x N with horizontal and vertical
bond energies contributing to the ME. The ME then consists of the sum of two terms, namely,
the row bond energies plus the column bond energies. Two optimization problems must be
solved for ME maximization. One seeks a permutation of the columns of [4] which maximizes

the row bond energy, the other seeks a permutation of the rows of [4] which maximizes the
column bond energy. These two optimization problems can be carried out independently of
each other. When both are completed, the optimal permutations of both rows and columns are

known.

The two optimization problems are mathematically equivalent. Only the problem of
maximizing the row bond energy is presented here. This problem requires selection of a
permutation ir = [r(1), r(2), . , 7r(M):1 of the integers [1, 2, ..., MI which maximizes

m-
bil bi2 + E bii bi, + 1 + b bi, M - 1 (A-1)

i = 1 j = 2

1. Computer times on the order of one or several minutes are required for 15x15 matrices, and rise as the fourth and
fifth power of the matrix size.

2. An extensive bibliography is contained in Ref. 26.
3. The satisfaction with the Bond Energy Algorithm is not based primarily on how close it comes tr achieving the

global optimum in Eq. (A-2) but rather on the pleasing patterns of clumps which it produces.

81



The term within braces is twice the bond energy for the ith row of [bii], where [N] = [ai,7(j)]

denotes the matrix whose jth column is the w(j)th column of [aii] . The mathematical

problem may be rewritten as

where

max
M M
E

1 k
E Qjkw(j) 7 r ( k )

j 1

N

Qjkrs = E air ais [8k, j - 1 + 8k, j 1]
i =

(A-2)

(A-3)

1<j, k, r, s<M

The maximization in Eq. (A-2) is taken over all M! possible permutations. This type of
maximization is known as a quadratic assignment problem because of the double appearance
of ir in the maximand. As previously noted, published algorithms exist for finding both
optimal and near-optimal solutions to Eq. (A-2).

INTERPRETATION OF ME OPTIMIZATION AS TWO TRAVELING SALESMAN PROBLEMS

The quadratic assignment problem formulated in the previous section is actually a
special type called the open-loop traveling salesman problem. Let

N
drs = E air ais = dsr

i =i

denote the scalar product of the rth and sth columns of [4]. Then, the maximization in (A-2)

is equivalent to
M - 1

max E (tiro) ,(j + 1) .
=

(A-4)

If one interprets drs as the distance 4 from city r to city s, the problem in Eq. (A-4) is to find
the salesman's tour [from city w(1) to Tr(2) .. to city ir(M)] of the M cities which has the
longest distance.5 Note that the tour origin is arbitrary and that the salesman is not required to
return to his origin. This tour is therefore called open loop.

4. If necessary, a large positive constant can be added to all ds in order to make them positive.
5. Subtraction of every drs from a large positive constant leads to an equivalent problem of minimizing the tour

length.

82



APPENDIX B

PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO

BY ROW AND COLUMN PERMUTATIONS

83



PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO

BY ROW AND COLUMN PERMUTATIONS

The purpose of this appendix is to prove that the sequential selection bond energy

algorithm will put a matrix into block factored form if it is possible to do so by row and

column permutations.

DEFINITION 1

A non-negative matrix A whose elements aii relate row entity i to column entity j is

called block factorable if the row entities can be decomposed into q disjoint subsets

R1,R2, . . Rq, and the column entities decomposed into q disjoint subsets C1,C2, . Cq with

the properties:

(1) If entity i e R then aii = 0

wiwss entity j e Ca, 1 <a < q

and if entity j e Ca, then aii = 0

unless entity i e Ra, 1 < a < q

(2) For each a, the submatrix [aij , i e Ra, j e Ca

cannot be further decomposed.

That is, A can be factored into q blocks if the row entities and column entities can each be

partitioned into q subsets such that: (1) entities in one row subset interact only with entities in

the corresponding column subset and (2) it is impossible to decompose the subsets further.

DEFINITION 2

A block factorable matrix is said to be in block factored form' when all the row

entities contained in each Ra lie together on the vertical axis of the matrix and all the column

1. Figure 4 shows a matrix in block factored form.

85



entities contained in each Ca lie together on the horizontal axis of the matrix. Clearly, the
matrix A is block factorable if, and only if, it can be put into block factored form by row and
column permutations.

LEMMA 1

Assume A is block factorable. If row entity i of matrix A is contained in Ra and row
entity j is contained in Rp with a*-P,then the scalar product of row i with row j vanishes.

Proof

For any entity k, aik=0 unless keCa and aik=0 unless keCp. Therefore,

aik ajk=0 for all k since Ca and Cp are disjoint.

LEMMA 2

Assume A is block factorable and select any Ra which contains two or more rows. No
matter how Ra is split into two distinct subsets, it is always possible to choose one row
from each subset such that the scalar product of the two rows is positive.

Proof

If such a choice cannot be made, then the submatrix [41, ieRa, jeCa is

decomposible, violating Definition 1.

THEOREM

If A is block factorable, then the sequential selection algorithm will put the matrix into
block factored form, and will do so by building one block at a time.

Proof

If the first row laid down came from (say) R1, then the next row to be laid
down will be one of the remaining M-1 rows with the greatest scalar product
with the first. Since (by Lemma 1) all the rows not contained in R1 have
vanishing scalar products with the first row, and since at least one (by Lemma
2) of the as yet unplaced rows from R1 (if any others exist) has a positive
scalar product, then the second row to be laid down will come from R1. By

86



repeating this reasoning it is clear that all the rows from R1 are laid down
before any other rows are laid down. More generally, one subset, Ra, of row
entities at a time is laid down and all the rows contained in each Ra lie together
in the matrix.

Identical reasoning can be applied to show that the columns are also laid down
with all the columns in each Ca lying together. Therefore, by Definition 2 the
matrix will be put in block factored form.



APPENDIX C

PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO

BY ROW AND COLUMN PERMUTATIONS

89



PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO

BY ROW AND COLUMN PERMUTATIONS

The assertion here is that the minimum of the ME' of a matrix which can be placed in

block form via row and column permutations occurs when the matrix is in block form, and

does not occur when rows (or columns) of one block are separated by rows (or columns) of

another block. Consequently, rigorous minimization of the ME must put the matrix into block

form. Since the gradient algorithm for moment compression will find a global rather than local

minimum of the ME, if sufficiently many starting points are used, it follows that the gradient

algorithm will put a matrix into block form if this is possible.

It suffices to examine how column permutations can minimize Ei ri. The basic idea of

the proof is that if the columns from one block are separated by columns from another block,

then removal of the extraneous columns, reuniting the columns from the first block, and

reinsertion (at one side) of the removed columns will strictly reduce Zi ri, hence reduce the

ME. Thus, the ME is at its minimum only if columns from the same block are contiguous.

An example is provided by Fig, C-1 which shows the 5 left-most columns of a matrix.

At least one X in each column is positive. Columns A, C, E form a block; no column to the

right of E lies in this block; and columns B and D are from other blocks.

The following theorem shows that if column D is moved out to the right of the block

(producing the column order A,B,C,E,D), then Eiri will decrease. Similarly, movement of

column B to the right of the block (producing the column order A,C,E,B,D) will reduce

further.

1.

N M
ME = E ri + E cj ir = moment arm for row i

i = 1 i = 1
J
c = moment arm for column j

91



COLUMN: A

X 0 X 0 X
X 0 X 0 X
X 0 X 0 X
0 X 0 X 0
0 X 0 X 0
0 X 0 X 0
0 X 0 X 0

FIGURE C -1. Sample Matrix

The general procedure is to identify the left -most column block whose columns are not
placed contiguously,2 and to move the right-most extraneous column3 from the midst of the
block to the immediate right of the block. Repetition of this procedure produces a column
oidering which places columns from the same block in contiguous positions. Since the
procedure leads to strict decreases in Eiri, it shows that the ME achieves its global ME only
when the matrix is put into block factored form.

The theorem which follows shows that each ri is decreased if the zeros which are
interior to a row are moved to an edge of the block, and is unchanged if a zero at one block
edge is moved to the other block edge. Thus moving columns B and D to the right of E will

reduce
3
E ri

i= 1

because the first 3 rows have an interior (or possibly left edge) zero at column B, and an
interior (or possibly right edge) zero at column D. Similarly,

7
E ri

i = 4

is also decreased by such a transfer because columns C and E provide interior zeros to rows

4-7.

2. 'Initially, this is block A,C,E.
3. Initially, this is column D.

92



THEOREM N N
Let W i > 0, E W. = 1 i= E iWi

.
J =1 J = 1

N
S = E vv; -3] 2 = moment for the vector W.

j= 1

Suppose for some k, 2Qc<N-1, Wk=0. Let * refer to a rearrangement whereby Wk has

been moved to the extreme right, and the vector then closed up:

W. WINO
INIMM

1<j.k-1
k<j<N-1

j = N

N
E= Jvv, p where p =---- E

j=k+1

(C-1)

(C-2)

S* = Sir *1 2
j

= the moment for the vector W. (C-3)
= 1

Then S* < S with equality if and only if Wk is an edge zero (that is, if Wi=0 for all j<k, or if

OW.= for all j>k).

Proof:

Seti= E + F where

k - 1 k - 1
E= w.i<(k-1) E w. = (1-(3)(k-1)

j = 1 j =1

N N
F= j w. = P (k + 1) .

j=k+1 j=k+1

93

(C-4)

(C-5)



Insertion of Eqs. (C-1, C-2) into Eq. (C-3) obtains

S S = (1 - () + 2 E wi (1- j)
j=k1-1

= (1 (3) + 2 0T- 2F = - 0) + 20E + 2 (a- 1)F

Insertion of Eqs. (C-4, C-5) produces, because 0 < < 1, the result

S* - S < 30 (1 - (3) < 0 with S = S only when (3 is 0 or 1, which occurs only if wk is an
*

exterior zero. Thus S* = S only if wk is an exterior zero. The converse is easily proved. QED.

Note that with the choice

we find S = ri = moment for ith row of [a..]. The theorem therefore states that the *

rearrangement (namely removal of an interior zero from the ith row of [Ni]) will strictly

reduce ri unless the zero lies at an edge.

94



APPENDIX D

THE BOND ENERGY COMPUTER PROGRAM

95



THE BOND ENERGY COMPUTER PROGRAM

A. OPERATION OF THE PROGRAM

The computer program for the Bond Energy Algorithm consists of two separate parts.

Thy: first part of the program reorders the columns while the second part reorders the rows.

Figure D-1 shows the essential program logic for selection and laydown of the rows to obtain a

new order with a large NME. The logic for the column selection is identical. It was found that

in order to examine a number of local minima it was necessary to initiate the program at

several starting rows (or columns). However, as pointed out in Chapter I of Part II, almost all

starting points (rows) resulted in a "good" solution.

B. CARD INPUT FORMAT

The input format that is described here is for arrays with integer elements. The only

change that would have to be made to accommodate decimal entries is in the input and output

formats for the initial and reordered arrays.

a. Card 1 Format (415)
MM = number of rows in the matrix
NN = number of columns in the matrix
IFZ1 = an increment to determine the starting columns or rows.

If IFZ1 = 5 then the algorithm is run K times beginning
with row 1 then row 6, and continuing in increments of
5 until K*IFZ1 + 1 > NN or MM

IFS
0 or .)lank if the input array is not symmetric

YM
1 if input array is symmetric

b. Cards 2 through MM + 1 Format (8011)
(NA(I,J), J = 1, NN) is the Ith row of the input matrix. This card
is repeated for all MM rows.

97



if

ENTRY

COMPUTE AND STORE THE
SCALAR PRODUCTS OF ALL
M ROWS WITH EACH OTHER

LAYDOWN FIRST ROW AND
SET i =1, WHERE i IS THE
NUMBER OF ROWS ALREADY
PLACED

SET k=1, WHERE k = NUMBER
OF THE ROW WHOSE INCREMENTAL
CONTRIBUTION TO THE ME WILL
BE COMPUTED

SET k=k+1 I

1\10
(DOES k=w)Y4EKHAS ROW k ALREADY)

BEEN PLACED?
YES IN°

SET .1=0, WHERE i =THE
ROW POSITION UNDER
CONSIDERATION

SET k=k+1

COMPUTE INCREMENT TO ME
BY PLACING ROW k IN
POSITION j

DOES j=i +SET1=-j+1

YES

SAVE POSITION POS(k) WHICH
GIVES GREATEST INCREMENTAL
CONTRIBUTION TO ME FROM
THE PLACEMENT OF ROW k

(FOES k =M

YES

LAYDOWN ROW k* IN POSITION
POS (k*) WHERE k* IS THE ROW
WFLZH WHEN PLACED IN POS (k*)
GAVE THE GREATEST CONTRIBU-
TION TO THE ME

1
( DOES i=Mg40N° SET i=i+1

rEs
STOP

10-29-69-1

FIGURE D-1. Flow Chart for Sequential Row (or Column) Selection and Laydown
for Bond Energy Algorithm

98



C. PROGRAM OUTPUT

The computer program GROUP 2 consists of the following output information:

(1) A printout of the input cards.

(2) A printout of the new row and column orderings at each step in the
sequential laydown procedure.

(3) A printout of the final reordered matrix.

(4) A printout of the final horizontal and vertical MEs.

99



BOND ENERGY ALGORITHM PROGRAM

COMMON MM,NN
COMMON NA190 9010090)/090),ME1901,NPOSI901oNSW
SET 1NrEY G Ko M s L

ID/M s 90
READ 100,MM,NN,IFZ1fIFSYm
IICIFSyM,E0o,01 2111YMs0
PR/NT100,MmoNN,IF11,IFSYm

100 FORMATt4I5)

DO 1 IsiiMM
READ 101,INA(I,J),J81,NN)
DO 12 jigleNN
Ir6NA(T,JI.E0,e0) NA(I,J)s0

12 CONTINUE

PRINT 102INA(I,J),J01,NN)
i CONTINUE
101 FORMATWil,

102 FORMAT6iY$59/2)

DO 22 KK1,NN.IF11

DO 2 /111,mM
2 KU/)s/

DO 3 JimioNN
3 1.10 IDIM * (J4)
KI1)00
KIKK)mi
ITEMPI s L(1)
LI1) L(MK)
LIKK) 8 ITEMPI

NTICK0 $ mTICK0
mElmotmglso
NiNNIPI

DO 150 NCOUNTiiNi
ND1*NCO6NY*1

DO 200 JRNC1ANN
ME(000
NPOSCOS0

DO 210 N*OoNCOUNT
NSUM11100°

DO 211 isiAMM

G K(I) (11 L(J)
M KtI) L6N)
M K(T1 * ON*1)

r '',E0,01(10 TO 212

101



III (NA(G).EO.0) GO TO 2/3
it (NA(m).E0.0) GO TO 712
NSUM NSUM NAtm) * NA(G)

212 IF(N.EO.No0UNT)G0 TO 211
IF (NA(m).EO.0) GO TO 711
NSUM s NSUM * NA(m) * NA(%)

213 IF(N.ED,O.OR.N.E0,N00UNT) GO TO 211
I, (NA(m).E0.0) GO (0 211
NSUM NSUM * NA(M) * NA(M)

211 CONTINUE

IF(N5Um.LT,mEt0)G0 TO 210
IF(NCOuNT.FO.1) GO TO 214
IP(NSUm.NE.mE(J)) GO TO 214
IF(N.E0.0.0R.N.EG.NOOUNT) GO TO 214
GO TO Pim

214 CONTINHE
ME(JtaNsum
NPOStOgN

210 CONTINug

200 CONTINUE

mEmAXmE(NC1)
NpmAxIINFOS(No1)
ImAXNci
Nc2uN000NT*2
DO 220 /11NO2,NN
Nswgi
IFtmE(I),LT.mEmAX)G0 TO 220
IrtmEtnerg.mEwAX) CALL E022(I,IMAX)
IF(NSw.NE.1) GO TO 220
ImA01/
mEmAXmEt!)
NpmAXNpOS(/)

220 CONTINUE
MEliMEi*MEmAX.1000
IF(NPMAy.NE.NCOUNT)G0 TO 140
NN1LtimAX)
LI/MAX)14(NPmAx+1)
LINPW(4,1)11NN1
GO TO 150

140 IF(NPMAx.NE.0) NTZCKNT/oKos
NP1NPmAX*1
NsAVENIL(TmAX)
Np2IINP1*1
FOR 145 /!TMAX,NP2,1
LII)4(Ivi)

145 CONTINUE
L(NP11.NSAVE

150 PRINT 105.1L(I)/IDIM*1. 1410NN)

Irt/FSYM.E0'0) GO TO 151
DO 152 /8/.NN

152 KII)4.1/1 / /DIM * 1
mr2mME1

PATICKoNyiem

102



GO TO 1151

151 CONTINUE
105 FORm4Tt4013)

Mi2MM.1

DO 350 mCOUNTNiomi
mC1smCOuNT+1

DO 400 /004%4"
MEtI)00
NPOS(1)10

DO 410 m000mcOUNT
mSUm=1000

DO 411 J01,NN

G n K(I) L(J)
H a K(M) L(J)
N a x(m+1) + 0..1)

IF(m,E0.0)G0 TO 412
IF INAto).EG.0) GO TO 413
IF (NAtH).E0.0) GO TO 412
MSUM 0 MSUM N4(H) * NAtG)

412 IF(m,E0.meOuNT)G0 TO 4/3
IF (NA0.E0.0) GO TO 411
MSUM MSUM + NAtN) NAtG)

413 Iiftm,E0.n.oR.M.E0,mo0UNT) GO TO 41i
IF (NA(4),E0,0) GO TO 411
MSUM MSUM NA(M) * NA(N)

411 CONTINUE

IF(mSUm.LT.mE(/))G0 TO 410
1 r(mo0UNT.E0.1) GO TO 414
IriMSUm.NEgmE(I)) GO TO 414
Ir(m,E0.n.OR.M,EO.mOOUNT) GO TO 414
GO TO 4in

414 CONTINUE
mE(I)msUm
NPOSt/him

410 CONTINUE

400 CONTINUE

mtmAX0mE(mC1)
NPMAX0NpOS(Moi)
JmAXMCi
mC20mCmUNTI+2
DO 420 i1M02,Mm
N11001

IFtME(I).LT.mEmAX)G0 TO 420
IF(MECTi.E0.MEmAXI CALL M41190400
IF(NSW.NE.1) Q0 TO 420

MEMAX0mE(2)

103



NPMAXIIINPOS(D
420 CONTINUE

mE204E2*mEHAX1000
IFINPMAx,NE.mCOUNT)G0 TO 340
MminKijMAXI
K(JMAX)41K(NPMAX+1)
K(NPmAk41)21MM1
GO TO 350

340 1,(NPMAv,NE,0) MT/OKBMT/cK1
mplNPHAX+i
HSAVEsq5(JMAX)
mi,21041214,1

FOR 345 ,;;;JMAX,MP2.1
K(J)=K(J.1)

345 CONTINUE
KImP1)21mSAVE

350 PRINT 105.IKCJI.J1.MMI
351 DO 352 G a 1,NN
352 LIG) LIG)/IDTM

PRINT 5034 (00.61:1,NN)
DO 500 Ini,MM
PRINT 501,K(/),INOK(1),L1J))/jel.NNI

500 CONTINUE
PRINT 502,NT/CK,MTICK.HEidele2

22 CONTINUE
502 FORMAT( 1/215.5)0*ME1g*,I58540PME2s,15/i)
501 FORMATI1X02, 2)5712/1
503 FoRMAT(imi,//5X,57I2//)

END

SUBROUTINE Ean(IIIM)
COMMON MMANN
COMMON NA( 9000),K(90),0010E(90)0OS(00)0NSW
SET INDEX 0 a K. H L

NSWaO
IF(NPOS(I/).MNPOS(IM))G0 TO 701
RETURN

701 DO 702 illioMM
G KtI1 LAID
H K(T) L(3M)
I, (NAIG).NE.WHI) GO TO 703

702 CONTINUE
RETURN

703 NSUM1110
NSUM2410
DO 704 /11,Mm
G KIT) * L(II)
H * K(T) L(IM)
NSUM1 NSUMI NA(o)

704 NSUM2 NSUM2 NAIHI

1,(NSUm1.LT.NSUM2)Nswill
RETURN
END



SUBROUTINE E02611Jj.Jm)
COMMON mmoNN
COMMON NAt90.90)0090).090),MEt90).NPOSt90).NSW
SET iNnEX G 14, N L

NSWm0
IPANPOS(JJ),EO.NROSIJm1)G0 TO 701
RETURN

701 DO 702 Tmi,NN
G a Ktjj1 * LtI)
M a Ktjm) LtT)
IF INA(0).NENAtml) GO TO 703

702 CONTINUE
RETURN

703 NSUm10
NSUM2s0
DO 704 Tici,NN
G a Kijj) *
N a KtJm) * OT)
NSUMI s NSUMI 4 NA(G)

704 NSUm2 NSUM2 NAtH)

PrtNSUm1.LT.NSUM2)Nswill
RETURN
END

SUBROUTINE Eta
TEMPORARY SUB
PRINT 900

900 FORMAT(FNTER E01*)
END
END

105



APPENDIX E

THE MOMENT ORDERING COMPUTER PROGRAM

107

V t



THE MOMENT ORDERING COMPUTER PROGRAM

A. INTRODUCTION

Two versions of the program are available. One, which handles arrays of size up to

100x16, reads the arrays directly from cards. The second, which is identical to the first except

in its input-output procedures, can handle arrays up to 100x100 and reads its arrays from tape.'

Because the two are so similar, only the first will be presented here; most of the discussion,

however, applies equally to both versions. A flow chart showing the main program logic is

given in Fig. E-1. The following section provides instructions for the use of the program;

Section C describes the program output.

B. INSTRUCTIONS FOR USE OF "MOMENT"

The following are the instructions for use of the moment program.

(1) Arrays of size up to 100x16 may be analyzed with the card input

version of the program; up to 100x100 with the tape input version.

(2) Arrays for the card input version are punched onto cards, one row per

card, as five-place floating-point numbers.

(3) As many separate arrays as desired may be analyzed in one computer

run. Each may be solved once, or, if desired, any number of times, with

the starting ordering chosen at random. In the latter case, the overall

averaged solution is given as well as each individual solution.

(4) The following data cards are necessary for the program:

(a) A card with 8 random integer digits in columns 1-8. This is

always the first card of the input data deck, and is required to

initialize the random number generator.

1. The only modifications necessary are in the form of the input data.

109



ENTRY
INITIALIZE
PROGRAM

A

READ IN A
NEW ARRAY

(TO
BE ANALYZED

ON RANDOM MODE?)

NO YES

CALCULATE INITIAL
CORRELATION COEFFICIENT

DO ROW AND COLUMN OPERATIONS
CALCULATE CORRELATION COEFFICIENT

HAS ARRAY RETURNED
TO OLD FORM?

NO YES

CIjIT BEING ANALYZED
N RANDOM MODE?

NO
F

YES

PRINT
SOLUTION

1FN

ALREADY HAVE ENOUGH
DIFFERENT SOLUTIONS?

SAME SOLUTION AS
PREVIOUSLY FOUND?

YES NO

STORE NEW SOLUTION;
PRINT SUMMARY

SUMMARIZE AND
PRINT ALL RESULTS

3-27-69-14

H

YES-

G

INCREMENT OLD
SOLUTION'S COUNTER

ENOUGH RANDOM
ATTEMPTS?

YES L NCB

FIGURE E-1. Flow Chart for Moment Ordering Algorithm

110



(b) A card with "FINIS" in columns 1-5 as the last card of the data

deck.

(c) In between the previous two cards, separate packets of data

cards, one for each array. If an array is to be analyzed in the

random mode, the first card of that packet must contain the

number of random tries (an integer) to be carried out in

columns 1-4, and the work "RANDOM" in columns 9-14. If

this option is not to be exercised, this card is merely omitted.

The next card (therefore the first card for the one-time-only

option) contains the number of rows (integer) in columns 1-4,

the number of columns (:integer) in columns 5-8, and the name

of the array in columns 9-80. This is followed by the cards

containing the array proper.

(d) As many packets of cards for individual arrays as desired may

follow each other. A sample data deck for the card input

version is shown in Fig. E-2. (A deck for the tape input version

could be identical except that it would not have the cards with

the arrays themselves punched.)

82340795

3 5SAMPLE DATA

1.0 3.0 0.0 0.54
8.4 2.7 6.11 12.04

0.0 14.0 111. 6.08

11.3

18.1

1.0

10 RANDOM
4 2MORE SAMPLE DATA

1.0 2.4

1.0 3.7

0.0 2.15

1.0 6.0

2 3MORE SAMPLE DATA

4.1 7.9 6.1

4.2 0.0 7.0

FINIS
11-13-69-13

-4-RANDOM NUMBER
-4-HEADER CARD, ARRAY 1

ARRAY 1

-4-RANDOM CARD, ARRAY 2

'*- HEADER CARD, ARRAY 2

}ARRAY 2

4-HEADER CARD, ARRAY 3

ARRAY 3

-4-LAST CARD

FIGURE E-2. Sample Data Deck for Card Input Version of Moment

Ordering Algorithm

111



C. "MOMENT" PROGRAM OUTPUT

The program output consists of the following:

(1) For each array analyzed, the program prints out a complete copy of
the array as read in, numbering the rows and columns.

(2) If only a single analysis is to be done, the program first prints out the
initial value of the correlation coefficient, R, and then after each row or
column operation prints out the entire array, numbering the rows and
columns appropriately and giving the new correlation coefficient. When
it reaches a solution, it prints the array and the message "THIS IS THE
SOLUTION."

(3) If the random-ordering, multiple-attempt option is being employed,
each time a new solution is found the program prints out the order of

the rows and the value of the correlation coefficient. When it has

finished the appropriate number of attempts, it prints out a complete
copy of the most-commonly-found solution and lists all of the solutions

found, giving the correlation coefficient, the number of times found,
and the order of the rows for each. It then lists the overall averaged

solution, giving the ordering of the rows and columns, and the average
position (with the RMS deviation) of each row and column.

(4) If the program encounters an unstable array structure (i.e., one in
which no solution may be found, but rather a cycle of states occurs
which will repeat itself indefinitely), it takes that as a solution, but first

prints the message "THE FOLLOWING SOLUTION IS NOT

STABLE."

112



MOMENT ORDERING ALGORITHM PROGRAM

PROGRAM MOMENT
TRACE ARRAYS

C STEPHEN DEUTSCH,EKT.358,SED
COMMON A(100,16)
DIMENSION NARMAY(50001
DIMENSION NSOLS(20,161
DIMENSION a50Lst258100)
OPENS/0N m(100)0(161,MT(1001,1411610MT041001oNT01181
DIMENSION nm(100),0m00.001,0Nt161,11N0116),1EXTt91
DIMENSION ROLD(100),NOLD(100)
DIMENSION RSAYE(1001

C I #ND m REFER TO COLUMNS, $.1 AND N TO ROWS
EPSia6
TLEFTP0.
TNOmaCLOCKTMOLEFT1
IFtTLEFT.LT.1000,) GO TO 14
CALL SLOPCNARRAY,5000,01

14 CONTINUE
READ 12;NDUM

12 FORMATtI8)
RANaRANiFtNDUm1

1 CALL READINtmC,MSIZE,NSIZEIEXTiMN,NMCOLm,NMAX1
20 IF(MC,E0.i) CALL RANORntm,m91ZE7NMCI

ROam2,
NLISTao
CALL CCOITZEiNSIZE, M,N,,R)

IFtMC,NE.11PRINT 106,R
100 CONTINUE

CALL Niot M;N,MS/ZE,NSIZE,G,MTO,NTO,DN.ONO.mT,NTi/EXT,MCI
CALL DUmPt51
IFCMO.N.E.i1PR/NT 108R
CALL mlol m,N,mszzE,Nsru,iihmTo,NTo,u;Aamo.mT,NT8zExT,mcs
CALL DUmPtS1
IF(mO.NE.1)PR/NY 108,R

108 FORmATt,/. R!*.F105)
/F(NLIST1E0.0) GO TO 9
DO
IFtABStReRSAVEtI/I.GE,EPS1 GO TO
IPCI,NE.NLIST1 PRINT 112

112 FORMATE * THE FOLLOWING SOLUTION IS NOT STABLE.)

GO To tin
11 CONTINUE
9 NLISTaNLIST4,1

R$AVE(NLIST)!R
IrcNILl!tan.ino) NL/STa0
GO TO 10n

110 CONTINUE
IF(MC,E0A1G0 TO 2
CALL Pe/NTAtmS/ZE,NSIZE, MiN,MTAT,IEXT1
PRINT 109

109 FORMAT(/ /+ THIS IS THE SOLUTION~)
GO TO i

2 IF(NUM,EO.0) GO TO 10
DO 6 Iu1,NUM
IPtA81tRaROLD(T11,LTIEPS) SO TO 7

6 CONTINUE
10 IFfNUM.Gg.25) GO TO 8

NuMmINUm1
ROLDINUm)01

113



NOLD(Num)111
15 DO 18 T:1,MSIZE
le MSOLS(NUM.T)mM(/)

DO 13 Iiii,NSIZE
13 NSOLS(NUmoT)=N(I)
5 PRINT 3:CMT(1),I11,MSIZE)
3 FORMATWX,3513/1X,35I3/1X3°I3)
PRINT 4;P

4 FORMAT(414 Pm )010,5)
21 IFCNMC,GE.NMAX) GO TO A

GO TO PO
7 NOLD(IS;NOLD(I)41

GO TO Pi
e CALL SUMf/EXT,NUM,MSIZE,NSIZEDOMOONOIMSOLSOBOLS,ROLD8NOLD.NMC)

GO TO
END

SUBROUTINC READINCMCOSIZEoNSIZE,IEXT,M,NINMO,NUMANMAX)
COMMON A(1.00,16)
DIMENSION M(100),Nt16)/MT(1001.NT116)./OT(9)
DATACIPANII6HRANDOM)
MCii0

3 READ 2,MSI2E,NSIZE,IEXT
2 FoRmAY(214.9481

NmCm0
NUm110

IPCIRAN.EO,IEXT(1)) GO TO 1
DO 4 ImliMSIZE
READ 5,(A(I,J),JsioNS/7E)

4 CONTINUE
5 FORMAT(18,5.2)

DO 6 /m1,NSIZE
6 NtI)*I

DO 7 /111,MSI7E
7 mf1)111

CALL PRINTA(MSIZE,NSIZE, M/N,MTiNT,IEXT)
PRINT 11sIEXT

11 FoRmAT(//10m1SOLUTIONS/1X.,016/)
RETURN
NmAXImmS/Zt
mewl
GO TO m
END

SUBROUTINE RANORD(MaMSIZEINMC)
COMMON A(100A16)
DIMENSION m(100)
DIMENSION RANS(100)

9 DO 10
RANS(/);RAN1F001)

10 CONTINUE
CALL SORT2(RAN5,M,MSXZE,1)
NMCIIINMeei
RETURN
END

SUBROUTINE SUMCIEriNUM,MSIIE.NSUE.DMO.DNO,M$00040LS.ROLD,
1NOLDOMC),
COMMON if100#16)
DIMENSION MX(100)

114



DIMENSION mSOLSt25,100,
D/mENS/oN NSOLS(25,16)
DIMENSION AVE(100),DEVt100),NOROER(100)
DIMENSION ROLD(100),NOLD(100)
DIMENSION IEXT(9),MT(100180(16)0m0(MSIZE)4NO(NSIZEI
DIMENSION NX(W

12 ISOLI11
IF(NUM.LT.2) GO TO 26
DO 22 I1.12.NUM

22 IF(NOLna),GT,NOLDtISOL)) 13%1
26 MZIO

DO 33 TielemSTZE
33 mX(IfsMSOLS(TSOL./)

DO 34 T;iiNSIZE
SA NX(I)4NSOLS(ISOL,/)

CALL PP/NTA(mSTZEINSIZE,m)ONX,MTAINT,IEXT)
PRINT 15

35 FORmATI,//* THIS IS THE MOST COMMON SOLUTION*)
PRINT 13,IEXT

13 FORMATaHii* SUMmARY*/1X944//00,R*00(8*T/MES FOuND
1/1

DO 25 ImismS/ZE
25 Ip(oMOrif.E0.00 MZEmZ61

MLOIMZ4(0SIZE-m2) /3
mOilm5/7E*i-IMSIZE-MI)/3
MGsMZ.1
NMZEIO
DO 14 isioNSIZE

14 ir(DNOt/).EO.0.) NMPINH21
DO 23 Ilai.NUM
DO 24 110.,MSTZE
MX(1)104SOL5(II,I)

24 My(DINT
CALL SORTVMXIIMTOSIZEoal
m011=0
DO 27 IsMG$MLO
MvALIIMSOLStISOL ,MT(I))
If(mVAL,Lt.MLO) m011emOwfi

27 1,(mVALGt,mM/1 MOKIIHow.1
DO 28 TIOHI,MSIZE
MYALMSOLSCISOLMT(I>)
IF(MVAL,LE,MLO) MOKIIMOKO.

28 IF(MVAL.GE,MM7) "OKIM01441
irtMOK,GT.0) GO TO 31
DO 29 IiliaMSILS

29 IrtMSOLS(IIi/),GT,MZ) msoLS1//a)umS/zE*mu1om50LS(II8I)
DO 37 7;1,NSIZE

37 Ill(NSOLS(ITiI).GTNMZ) NSOLVII71/ IINSIZE*hM244-NSOL5(II.I1
DO 30 TitimSIZE
MX(1)0.'00(11,1)

$0 MT(I)wt
CALL SORT2(Mx,MT8MSIZEow11

$1 PRINT 52,ROLD(WiNOLDt/1),(MT(4)Jm19MS11E)
32 FORNIATI1Y0,10.5,111,5X,32/3/18X,3413/1gx#34T3)
23 CONTINUE

PRINT 15
15 FORMAT(e /Ow AVERAGED SOLUTION*W ROW AVERAGE DEVIATION

1/1
AZNMC
DO 16 IillsmS/ZE

MOW ORDER' /)

115



AVE(/).0.
DO 16 jiel.NUM
AXIIMSOLS(J,/)
AV*NOLD(j)
AVE(Ii*AVEtI)+AX*AY/AZ

16 NORDER(/)117
DO 17 T;i,mSIZE
DEV(/),10.
DO 18 JO.,,NUm
WimSOLstJ)
AVNOLD(J)

LB DEV(/)OEVII)*AY*(AX*AVE(1))**2/AZ
17 DEV(I)SORT(OEV(I1)

CALL SORT2tAVE0NORDERsmS/ZEP.1)
DO 19 I;1,MSTZE
PRINT 20,NORDEP(/),AVEQ/),OEV(NORDER12))

20 FoRmAT(TS.2Ft0,2)
19 CONTINUE

PRINT MM
38 FORMAT( / //* AVERAGED SOLUTION*///* COL. AVERAGE DEVIATION*

1/)
DO 36 IioNS/ZE
AVEC/W.
DO 36 JO.,NUM
AXINSOLS(J.I)
AVgNOLntJ,
AVE(/)*AVECI)*AX*AY/AZ

36 NORDER(I) T
DO 41 TilioNSIZE
DEV(I)RO,
DO 39 jill1sNUM
AXgNSOLS(J,I)
AVINNOLn(J)

39 DEVI/)*DEVtI)*AY*(AX*AVE(2))**2/AZ
41 OEV(I)*SORT(DEV(I1)

CALL SORT2tAVE,NORDER,NS/ZE,*1)
DO 40 I,KioNSIZE
PRINT 208NORDERII)sAVEIDOIV(NOROER(2))

40 CONTINUE
PRINT 2i

21 FORMATt1M1)
END

SUBROUTINE PRINTA(MSIZE.N322Eo M.N.MT,NTs/P:XT)

COMMON AC100,16)
DIMENSION MX(100)
D/MENSION M( MS/2E)01(NSIZE)OTIOSIZEIoNTINSIZEI
DIMENSION IEXTC9)
DO 3 Igi,MSIZE
MX(I)m(I)

3 MT(I)mt
CALL SORT2IMX/mToMSIZE..11
DO 5 /818N5/LE
MX(I)N(T)

R NY(/)nr
CALL SORT2tWONT,INSVEs.11
PRINT 10,1EXT,NT

10 FORMAT(li-4.9A8///104 .16X.16±7/)
DO 100
PRINT 280,mT(Z),(AIMT(T)rNT(J)ritigi.RWEI

116



100 CONTINUE
200 FORmAT1im0,/6,101.3)

END

SUBROUTINE MIDI M.NDMSIZEgNSIZEIRomTO,NTODM,DMO,MT.NTDIENTDMC)
COMMON A1100,16)
DIMENSION MX(100)
DIMENSION m(mS11E),NINS/ZEIsmT(OSIZEIOTINS/ZE)
DIMENSION PATO(mSIZE),NTO(NSIZE,TDMIMSIZE)4oM0fMSIZE1
DImENS/oN YTASLE(16),ITIE(100)90SAVE11001sIEKT(9)
EPSwiEw5
DO 3 /mt,MSIZE
MXtflilm(II

3 mftI)st
CALL SOQT2Cmx0TIMS/ZED,..1)
DO 5 /191,NS/ZE
Mx(1)8N(I)

5 NY(I)/
CAU SORT2(MX,NT,NS/ZE,1)
D0110 T:i.mSIZE

110 MTO(T)mmTili
D0115 JiaiNSIZE

115 NTO(OuNTIO
DO 20 IismS/ZE

DO 15 JirlDNSIZE
D110D1AimTt/;0NT(J))
Xhinj

XioXid,XN*A(MT(XI.NT(01
15 CONTINUE

Dm(I)Oti/O1
20 CONTINUE

DO 12 I;Ai.MS/ZE
12 omO(MT(/)foom4I)

CALL ORDERtDmomSIZE,MT,M,MTI)
R5EST.4.2.0

DO 21 1:100(
ITIE(1)10
JI4,1

Ir(Dm0(mT(/)),E0440(MT(0)1ITISIII1
It(DmOlmTfI).E010,) /TIEM00

21 CONTINUE
ITIE(MSIZE)0
NTIEDei
IRO

22 III+1
IFEITIOII.NE.0)G0 TO 23
If(NTIED.NE.I)GO TO 24
Ir(I.ME.KKIGO TO 25
GO TO 22

23 NTIEDPNTIED.i
GO TO 22

24 ITABLECOml
IFINTIEO.ST.9) PRINT Sdi
IF(NTIMOT.9) NTIED60

14 FORMATI.NORE TMAN 9 ROWS OS COLUMNS TIED WHILE DOINO, ALGORITMm, F
1IRST 9 IN TIE WERE REORIDERrO, OTM(ENS LEFT IN OLD MO+,
no 27 ttmi:msItt

117



27 mTO(IIIIrmT1//)
RBESTR.2.0
NrACTIgi
DO 28 Irsi,NTIED

2e NIADTIINFACT*I/
DO 29 Ilia oNFACT
CALL PERMUTEINT/EDo/TAALE1
DO 30 jjxioNTIED

30 M70(1,,NTItn*JJ)1(/*NT/EDibITABLECJO)
DO Si jjei,MSIZE
MX(JJ)MTO(JJ1

31 m1JJ/mjj
CALL SORT21MX.moMSIZE..11
CALL CDO4SIZE,NSIZE, m.N8R1
IF(R.LT,IRREST.EPS)/G0 TO 29
RBESTp
DO 32 JJIgioMSIZE

32 MYSAVEQJIBMTOWJI
29 CONTINUE

DO 33 jjol1oM5/ZE
MT(JJ)PMTSAVE(JJ)
mK(J,J)mmT8AVENJ1

33 mIJOIJJ
CALL SgpT2tmx,momS/ZE0,1)
NYIEDii
IFII,LT.KIOG0 TO 22

25 RaRSEST
IF(R.E0.4.2.0tCALL COMSIZEASIZEI MoNfR1
/r(mo,E0.1.,RETHRN
PRINT 10,ZEXT,NT

10 FORMAT(tki,o9A5///iM '2)61629/)
DO 100 IsliiM5I7E
PRINT 200.M7(1),1ACMTCI1,NT(0)7JoisNSIZEIDOMO(MT1:1)

100 CONTINUE
200 FOPMATIfM0,12.10.7.3oF5 21

RETURN
END

SUBROUTINE Ni0( MoNsM5/MOISIMRoMTO,NTOoDN,DNO,MT,NT8I(XT.MC)
COMMON i1100,18)
DIMENSION MX(100)
DIMENSION M(MS/ZE)oN(N52201MTCOSIZOINTiNSIZEI
DIMENSION MTO(MSIZE).NTOINSVEMNOS2ZE/foNOINSIZE/
DIMENSION 2TABLE(i6haTulig0).NTSAVE11001,MT191
EPS/11,E.5
DO 3 /midi/a
MXII/PM(1/

3 017(/)41
CALL 30912(MIGMT,MSIZE,01)
DO 5 181,NSIZE
MXIDEN(/1

5 NT(DT
CALL SORT21WONToNSIZEo.11
D0110 /0-.MSIZE

110 MTOCIIIIMI121
DOi15 J.118NSIZE

174 NTOI0NT(J)
DO 20 j;i8NONE
Dim0.
XlmO,

118



DO 15 IfisloMSIZE

OliD"AfMTC/I,NT(0)
XPOI
XiwX100AIMT(I)*NT(01

25 CONTINUE
DN(J)wYi/O1

20 CONTINUE
DO 12 /W1oNS/ZE

12 DNO(NTW)IIIDN(/)
CALL OPOERIDNiNSIZE,NT,N8NTO1
R8ESTs2.0
KOONS/M.1
DO 21 IW1,1101
ITIE(I)10
JwI+1
IF(DNO(NT(1)1.E04NOINTWMIT/E(11111
I(CNO(NT(T)1.E040.1 IT/E1/10

21 CONTINUE
IYIE(NS/ZE)0
NYIEDwi
Iwo

22 1'1+1
IF(ITIE(I).NE.0)G0 TO 23
IFCNT/ED.NE.1)G0 TO 24
I(I,GE.HW)GO TO 25
GO TO 22

23 NYIEDNt/EDei
GO TO 22

24 /TABLEWili
I(NTIED.ST,9) PRINT 34
I(NTIEC.GT.9) NTIEDR9

34 FORMATC*MORE THAN 9 ROWS 01 COLUMNS TIED WHILE DOING ALGORITHM, F

1IRST 9 /N.TIE WERE REORDERED WOOERS LEFT IN OLD ORCER*)

DO 27 Its1,NSIZE
27 NTOUIlaN/t/II

R5ESTsw2.0
NACTii
DO 28 IlwisNTIED

28 NFACTmNFACT*IX
DO 29 IisioNFACT
CALL PERMUTECNTIED,ITABLEI
DO 30 JJwioNTIED

30 NIT(IwNTIED.WOmNT(IwNTIEDOTABLEIJOI
DO 31 jjwisNSIZE
MAIMINNTOUJ)

31 NIJOJJ
CALL SORT2CMX,NoNSIZE*41
CALL CCimBiZE*NSIZEs NoNoR,
IIR,LT.CR8EST0EPS))G0 TO 2,
RBESTIIR
DO 32 JJisNSIZE

32 NTSAVECMNTONJ)
29 CONTINUE

DO 33 JjieNSIZE
NIIJONTSAVECJO
MX(JOwNTSAVECJJ)

33 NIJONIJJ
CALL SORT2IMX*NOSIZE*011
NtIE3,
I(I.O.KK)GO TO 22

119



25 RoRBEST
Ilr(R,E0..2.0)CALL COMS/ZEASIZEs MoN.R)
IFIMC40.10RETURN
PRINT ilL/EXT,NT

10 FORMAT(1141:0A8///1H f2y,1617/)
DO 1(1°
PRINT 200,mT(1),(A(MICT).NT(J)176121,NS/ZEI

100 CONTINUE
200 FORMAT(iMO.I2,16F7.5)

11s0
PRINT 200.TI.IDNO(NTIJ)),JE0oNSIZE)
RETURN
END

SUBROUTINE ORDER(D,MS/7E.MT0M,MTO)
COMMON A(i00,16)
DIMENSION EX(100)
DIMENSION D(mSTZE),MT(045/ZE),MIMSIIE),MTOIMSI2E)
CALL SORT2(O,MTOOSIZE,1)
DO 60 TitioESTZE

MTCDEMTO(Y)
40

CALL SORT2(MTO,M,MSIZE.,1)
END

SUBROUTINE COCES/ZEiNSIZE, M,N ;R)

COMMON Ati00.16)
DIMENSION MIMS/oNINSIZE)
DIMENSION WL/ST(100 loYL/S41100)
S4E0,
SYEO,
SSW),
SSY110,
SPXYO.
SPO.
XLMsMSIZE
XLNIINSIIE
XLMni,/XLM
XLNI119/XLN
DO 1 jol,NSIZE
)(NNW)

I YLISY(J)0XLN
DO 2 isMSTZE
AmM(I)

2 XLIST(/)14*XLM
DO 11" Ifek.MSIZE

DO 100 joioNSIZE
ZIYLISTIO
PliA(I161)

XPPAsa
YPPAtZ2
SXESX.XP
SYESYOP
S$X1ISSX.AXPEZ
SSYESSY0P022
SPXY'SPXYAXPAll

100 sposPo,
SIIIPssxtMes2/SP
Simms0.1sywp2ims

120



SPDXVIISPXY0SX*SY/SP
RRDSORT(SSDX*SSDY1
IF(RR.F0.0.) Rs0,0
1,(RP.NE.0.) REISPDXY/RP
ENDSEND1

121



APPENDIX F

THE MOMENT COMPRESSION COMPUTER PROGRAM

123



THE MOMENT COMPRESSION COMPUTER PROGRAM

A. INTRODUCTION

This Appendix describes the computer program MOMCOMP which implements the
gradient algorithm in Chapter III of Part II. The main program logic is shown in the flow chart
in Fig. F-1.

B. DATA RESTRICTIONS

The program can handle an indefinite number of non-negative matrices, each up to
75x75 in size. The data packages for successive matrices are stacked one after another.

C. FORMAT FOR INPUT DATA

The listing of MOMCOMP includes, for illustrative purposes, the data package required

as input for the second example in Chapter III of Part II. This is a 10x10 matrix and three

starting points are requested for the row or column optimizations.

The data input package for each matrix consists of two types of cards. The first card
type contains the three variables N, M, IRAN punched according to format (315).

Here

IRAN =

number of matrix rows

number of matrix columns

number of randomized starts for the optimization in each
direction. (Row and column optimizations therefore consume 2

IRAN starts.)

The secord type of data card is used to read in a single row of the input matrix. Successive

rows are punched on distinct cards, with each card employing format (6011).

125



If the matrix contains up to 60 columns exactly, N+1 data cards will be required,
namely one of type 1 and N of type 2.

D. SUBROUTINE DESCRIPTION

The portions of MOMCOMP include:

(1) Main Program, which controls execution,

(2) DATA subroutine, which reads input data.

(3) PERMGEN subroutine, which generates randomized permutations for
use as starting points.

(4) ZMIN subroutine, which minimizes the sum of either the row or
column moments, using the iterative gradient algorithm described in
Chapter III of Part II.

(5) LAP subroutine, used by ZMIN, which solves linear assignment
problems.

(6) Z function, which computes the objective function, taken as

(7)

Ili

Z=

M

N

i= 1

M

j = 1

ri

c.

for optimization of column order

for optimization of row order

Z is the root-mean-square moment arm.

Subroutines INITCOL and INITROW, which prepare the data needed
by ZMIN for minimizing Z. The required data are the W's and H's in the

expression (see Eq. 8-9) in Chapter III of Part II).

Z (v) =

126



where L = N(M) for optimization of the column (row) order, and where

r denotes a permutation of the L columns (rows).

E. PROGRAM FLOW CHART

Figure F-1 is the computer program flow chart for the Moment Compression

Algorithm.

START

READ DATA FOR NEXT PROBLEM

(EXIT IF ALL PROBLEMS DONE)

INITCOL INITIALIZES DATA FOR OPTIMIZATION
OF COLUMN ORDER

OPTIMIZE COLUMN ORDER BY USING ZMIN TO
MINIMIZE Z. STARTING ORDER IS GENERATED

BY PERMGEN (THIS BOX IS EXECUTED IRAN TIMES)

INITROW INITIALIZES DATA FOR OPTIMIZATION
OF ROW ORDER

OPTIMIZE ROW ORDER BY USING ZMIN TO MINIMIZE
Z. STARTING ORDER IS GENERATED BY PERMGEN

(THIS BOX IS EXECUTED IRAN TIMES)

FIGURE F-1. Flow Chart for Moment Compression Algorithm

F. ERROR MESSAGES

(1) The only error message from ZMIN is that convergence has not oc-

curred after 100 iterations (each ii ',ration is one gradient step and

involves one linear assignment probiem).

127



(2) Five possible ERROR messages may occur in LAP:

Type 1: Step 1 has been unsuccessful at covering all zeros

Type 2: Same
Type 3: Matrix element for the linear assignment problem is negative
(should never occur)
Type 4: Step 2 fails to find a primed zero in the indicated row (should
never occur)
Type 5: Same as Type 3 error (should never occur).

G. TIMING

The following times should be multiplied by twice IRAN.

(1) 10)(10 problem consumed roughly 3 seconds for optimization of row

, (or column) order for each starting point.

(2) 16x16 problem consumed roughly 10 seconds ror optimization of row

(or column) order for each starting point.

H. COMPUTER PRINTOUT

The computer printout from MOMCOMP consists of the following:

(1) The input data

(2) The number of the starting point (ranging from 1 through IRAN) and

whether the row or column order is being optimized

(3) For each starting point, the sequence of permutations and Zs generated

by successive iterations of the subroutine ZMIN.

There is no attempt to choose among the several solutions obtained by varying the starting

points and no printout of "the" final matrix since this is generally non-unique. The user must

extract, from the printout, the row and column permutations which minimize their respective

Zs.

The computer output must be interpreted as follows. If the row permutation is peoated

as ir(1), ,ir(N), then the optimal rearrangement has, as its 7r(i)th row, the ith row of the

input matrix. The user is reminded that the permutations [ir(1), AN)] and

[N+1-7(1), . . . ,N+1-7r(N)] are equivalent, each being the other in reversed order.

128



MOMENT COMPRESSION ALGORITHM PROGRAM

10 10 3
PROGRA mOmcOmP

C p,SomwF/TZER X314
COMMON w(100 )04(75.75),D(75775).C(75.75)/11RAN,Nim
D/mENSToN TPFRH(100)

C INITIALI7E RANDOM NUMBER GE4FRATOR
RANoN(3.1416)

C FINDS IRAN LOCAL MIN FOR ROW AND COLUMN PERMUTATION,

1 CONTINUE
CALL TImE(19.17HREG/N NEw MATRIX,)

CALL DATA
C READS nATA

CALL TImEtA9,11HDATA IS IN. )

CALL /N/TCOL
CALL TIME(19,11HINITCOL DONE.)

C COMPUTES w AND H FOR C1LUmN PERMUTATIONS,
Do 2n TlitsTRAN
Lim
CALL PAGESKP
PRINT 50,I
CALL PrPmGEN(IPERmiL)

C CALL TImE(39,13HPERmGEN DONE.)

C GENERATES PERMUTATION OF imm.STORES IN IPERm.

CALL TImE(39,41HZmIN STARTS OPTIMIZATION OF COLUMN ORDER.)

CALL ZmIN(L,TPERm)
C ZMIN FINtiS OPTIMAL COLUMN PeRmUTATION, STARTING FROM IPERm.

CALL T/mr(39,39Hzm/N ENDS OPTIMIZATION OF COLUMN ORDER.)

20 CONTINUE
CALL IMITROW
CALL T1mr(A9ii3HINITROw DONE.)

C COMPUTES w AND H FOR Row PERMUTATION
DO 30 Tili.TRAN
0084

CALL PAGESKP
PRINT 50,/

50 FoRmAT(.oPERGmEN CALLED FOR TIMEeIS)
CALL PERmdEN(IRERM.L)
CALL TimE(39,13HPERmGEN DONE.)

CALL Timc(39,38HZmIN STARTS OPTIMIZATION OF ROW ORDER.)

CALL ZmiNtLAIPE.Rm)
CALL TImE(39,36MZMIN ENDS OPTIMIZATION OF ROw ORDER,)

30 CONTINUE



C FINDS OPT/" 4L ROw PERMUTATION, STARTING FROM /PEkm,
GM TO
END

C

C

C

C

SUBROUTINE 0414
COMMON 0100),m(75,75).D(7505)iC(7505)IRAN,NoM
CALL RAGESKP
READ ip:N,m,IRAN

10 FoRMATOI51
PRINT 151,N:m,IRAN

15 FoRm4T(*NEW CASE.
C DO lA TO,N
C18 PEAL) 20:(ntI.J),J=1,M)
20 FoRm4T(7F10.5)

DIMENSION 10(100)
DO 25 Is11N
kEAD 21:(in(j),J11104)

21 FoRM4T(6nI1)
DO 23 Jlipm

23 D(I,J)1, 10(J)
25 CONTINUE

PRINT 10.tt(T,J,D(I,J)),J1:104)
30 FORmAT(/*OR/0INAL MATRTY //eI

PRINT 40
40 FoRM4T( DATA ALL READ IN 0)

RETURN
END

N,M,IRAN

C

C

C

0,315)

.I=1.N)
J D(X.J) 0/(2I50'10.3)1

SUBROUTINE INITCOL
COMMON 0100).H(75075)4(75,75)aC(75175)IRAN,NoM
DIMENSION S000)
DO 5 Ini,N

VO 3I)1°J;1M
3 S(I) S(T)* D(I,J)
5 CONTINUE

DO 15 J:104
wi0s0,

10
D) 10

w(J)iD(I.J)/StIll
15 CONTINUE

DO 30 J;iim
DO 19 ww1.J
xup,

DO 17 !glom
17 XIIXeD(T;J) *D(I.K)/S(I)411.2

3 CONTINUE
DO 40 JalipM
DO 35 Ksj,M

35 HfJoKm N(K,J)
40 CONTINUE
C CALL PAGESKP
C PRINT 150.«J04(01011.m)
C50 FORmitT(plINITC0L DONE. J WW1 oritME15.8))

130



4 Pk:NT 60,1((jOKOHW0K))0001,10M)PJ°10"
C60 FORMAT(/*J H(J,K) */12I5,E16.0)

RETURN
END

C

C

C

C

SUBROUTINE INITROw
COMMON 0100),m(75.75),D175175)1O175,75),IRAN,Nom
DIMENSION S(1.00)
DO 5 /atom
S4/)=0,
DO 3 J4110

3 SI!) S(17)+ D(JiI)
5 CONTINUE

DO 15 J;11..N
w14)110.

P° 10 !glom
10 wfOs w(J)+DO.I.I)/StI)
15 CoNTINIIE

DO 30
U0 ig 1611,j
Xa0,
DO 17 lisioN

17 XaXeD(J,T)*D(K,I),SCI)..2
19 Hf4J.KINX
30 CONTINUE

DO 40 jigioN
Do 35 KcjoN

35 Ht.J8K)s HIK,J)
40 CONTINUE
C CALL PAGESKP
C PRINT 50ft(J.W(J),,Jx1,N)
C50 FORmAT(/*INITRMw DONE. %: w(J) 01/(I5,E15.8))
C PRINT 60,1t(J,K,H(J,K))00111/Nlado1,N)
C60 FORmATt/*J K HtjoK) ,A1215.E16.0)

RETURN
END

C

C

C

SUBROUTINE PE64 4GENt/PERM,N,
DIMENSION /PERm(100):xw(100)
DO 10 TIO.AN
/PERM(T)01

10 XX(/)RANCN(0)
CALL SORT2(XX,IPERM,N,1)
RETURN
END

C

C

C

FUNCTION Vil,IPERM)
COMMON 0100).14t75.75)4t75175);C(7505),IRAN.NROWOCOL
DIMENSION IPERm(100)
2,4,
DO 10 Jillism
ZeZ4,w(J)+ILOATFC3PERMIJI)ca
DO 5 OfisioM

131



5 Z47wwcJ,m)*FLOATF(IPERm(sAeIPERm(K))
10

C

C
f

CONTINuE
Z SORTF(Z/FLOATF(N))
RETURN
END

Su8ROUTINE ZmIN(mo/PEPm)
COMMON u(100),w(75,75)00(75;75)i(;+(7505),/RAN,NROwsmCOL
DimENSToNIPERm(100),TcHRPER(100)NEwPEP(1")rvc1o",
ZNEW Z(m,TPFRm)
PRINT 10, ((/,'PERm(/)),11,10)

10 FORMAT(/* ?MIN INITIALIZED AS FOLLOWS, FERmUTATION011(2I5))
PRINT 15,ZNEw

15 FoRmAT(40BJEcTIVE FcNili *8E213.6)
DO 20 T41om

20 NEwPER(/) IPERM(I)
Do 100 LLL01,100

C CALL TTmr(lq,24HZMIN BEGINS ONE ITERATION,)
LL:LLL

C Do UP TO 100 LOOPS OF ITERATIONS
DO 21 1 ;11,m

21 IcURPEPtT) NEwPERtI)
ZGLDa 7NFW

C GENEPATE c MATRIX
VO 25 Jitism
Y(J): 0,
DO 23 w4is'A

23 Y(61)2 befj,w2,4R(JdO*FLOATFlICURPEP(K))
25 CONTINUE

DO 30 J41.m
Do 28 wsliso

28 C(J004 wtJ,*FLOATF(K),0424 Y(J)*FLOATF(K)
30 CONTINUE

ILK LAP( moNEwPEROBJ)
IP (IL.Fn .1) RETURN
ZNEw 7(msNEwPER)
PRINT 40aLL,ZOLD,ZNEw

40 FoRmATc4 ZMIN ITERATION NUMBER ib,/3,11,,OLD AND NEw OBJECTIVE FUNCTI
IONS' *,2E20.0
PRINT 45,((/sNEwRER(I)),IwirM)
FoRmAT(4NEW PERMUTATION*/(215))
IP(ZNEwF4OL0) 100,608150

60 DO 70 T4lom
IF(NEwPEP(/).NE,TCURPER(/)) GO TO 100

70 CONTINUE
GO TO 150

100 CONTINUE
150 PRINT 160. LL
160 FORmATt*/TERATIONS END AT LOOP*;151

RETURN
END

C

C
C

FUNCTION LAPt Ns/PERMOT,OBJ)
COMMON w(100),w(75,75) a(751,75)iCt75#75)c1RAN,NROWOCOL

C LINEAR ASSIGNMENT PROGum SOLVER WITH N X k C. C IS DESTROYED.
C RETURN uTTN LA0610 IF SUCCESSFUL? 1 IF UNSUCCESSFUL,

132



C OUTPUT IS OPTIMAL PERMUTATION IN IQERMOT, MINIMUM OBJECTIVE FCN IN OBJ
DIMENSXON IPERmOTWQ):I1ER0(001,JZER0(500)*
1mARK(5n0), mCOLCOV(100),mROWCOV(10r).LISTI2n0)
DIMENSTON 0100),V(100)

C CALL TImE(39,10HLAP BEGINS)
SUB=0,

3 ISTEPts0
/ERRORs0

C SUB. COmULAT/VE AMOUNT SUBTRACTED 7HUm A ROw OR COLUMN,
C PRINT 1:(((/,,J,C(/,J)),J=1.1V), I=1,N)
C1 FoRmAT(2T5,E18.7,215,E18.7.215, E1A.7820,E18.7 )

C SUBTRACT SMALL ELEMENT FROM EACH R00,
DO 10 Islitv
XsC(Ir4)
DO 5 J.2oN

5 Xs AMIlv1 (Y,C(I.J))
SUB: SPB+X
DO 10 JisigN

10 CII#J). C(1,J),,X
C SU3TRArT SMALL EST ELEmEN7 FROM EACH COLUMN

00 20
XsC(1,j)
DO 15 /10,N

15 Xs AmIN1 (Y.C(I,J))
SUB= SI1B+X
DO 20 /81'N

20 CII.0)1 C(7,J).X
C PRINT i,(((I,J,C(I#J)),J=1,N);I=1,N)
C STORE ALL 2EPOS TN A ONErDIMENSIONAL ARRAY, NZEWO ZEROS.
C KIITH ZFRO IS AT IZERO(w)..12ERO(K).
C MARK(K)s 1 IF THIS ZERO IS 3TARREC, i,1 IF IT IS PRIMED. wo OTHERWISE

NZERoun
DO 30 IitN
Do 30 jsieN
IFiC(I8J)1 25,27,30

25 CfI,J) sn.
PRINT 26,7,J

26 FoRmATC/*ELEmENT+.2/5.*RESET To 10401
Go TO On

27 NEER°. NZER04,1
IZERO(N7ERO)al I
JZERO(N7FRO)=J
mARK(N7FROW

30 CONTINUE
35 FORMAT( 'ZERO PR/NTOUT*/12015))
C INITIALIZE COVERS
C mCOLCOViI)i IF COLUMN I IS COVERED,u IF UNCOVERED, SIM. FOR mR0woOV.
C INITIALIZE STARS

NSTARA6
C NSTAP. NUMBER OF STARRED ENTRIES
C DO INITIAL STARRING BY SUCCESSIVELY CHOOSING ZEROS WHICH NAVE THE LEAST
C NUMBER OF OTHER ZEROS IN THE COYERERED PORT/ON OF EITHER ROW OR COLUMN.
C THEN COVER THAT ROW OR COLUMN.

DO 2000 IsliN
MROWCOV(1).0

2000 mCOLCOV(T)00
2100 ICOVERs0

MINLINES2sN
m/NSUMwON

C AT END OF PASS. ICOVERAIO MEANS ALL ZEROS ARE COVERED, ICOVER POSITIVE

133



C MEANS HNrOVEREV ZEROS EXISTi AND LwEST IS THE HEST OF THEM, HAVING THE

C FEwEST(mTNL/NE) OTHER UNCOVERED ZEROS IN ITS ROW OP COLUMN.

DO 2200 Kni,NZERO
C COMPUTE NOmpE; OF UNCOVERED ZEROS IN LINE WITH K-TH,EXcLUDING K ITSELF,

IF(mPOwoOVI/ZEPO(K)).E0.1) GO TO 2200
IFtmcOLcnv(J2E00(K)),E().1) GO TO 22c0

C K IS UNcOVERFD.
ICOVERsi
/NKROWO
/NKCOL0

C INKROw(INKOOL)0, OF uNcOvERED ZEROS INRCW(COLUMN) WITH K

DO 215n Li,NZERO
IF(/ZEPo(K).E0.NERO(L)) GO To 2120

Ir(JZERO(K),NE.J7ER0(0) GO TO 215'.1
C L IS IN SAME COLUMN AS K AND L,NE.K, NOW TEST IFUwCOVERED,

IF(MR04OnVlIZERO(L)),E0.11 GO TO 2t50
iNKooLiTNKcOL*1
GO TO pi50

2120 IFtmco LcOVLIZER0(0).E0,t) GO TO 215u
IF(L,E0,10 GO TO 2150

C L IS IN SAME ROW AS K, OISTINCre AND UNCOVERED,
/NKROW/NKROW+1

2150 CONTINUE
iNKLINE,; MINO(INKROW,INKCOO
INKSUMmINKROW4INKCOL
IF(INKL/NE.GT.mINLTNE) GO TO 2200
IF(INKL/NE.E0.YINLINE,AND.IIKSUM.GE.HINSUo) GO TO 2200

m/NLINFit INKLINE
m/NSum TNKSum
OAST K
IFCMINLINE,E0,0,AND.M/NSUM,LE.1) GO TO 2300

2200 CONTINUE
IF(ICOVER.EO.0) GO TO 2500

C UNCOVERED ZERO AT LBEST IS NOW COVERED.
2300 PAROwcOViTZERO(LBEST))i

mCOLCOV(J2ERO(LBEST)),
maK(LpEST)i
NsT4RigNsTAR.bi

C PR/NT 2450' IZEROILBEST),JURMBEST)
C2450 FoRmATt'aNITIALIZAT/ON COVf2S ZERO AT*, 215)

GO TO 2100
2500 CONTINUE
C STARRING Or ZEROS DONE.COLURNS PROPERLY COVERED' UNCOVER ROWS

DO 40 T;tiN
40 mR0wcOVi/10
C PRINT M5,11K,I2ERO(K),J2ERO(K),MARK(K))/KK18INZERO)
C PRINT mO,NSTAR
C60 FORMAT( PRELIPINAR/ES DONE4 iI5reSTAki, )

Ir(NsTAR.go.N) GO TO 400
C

C

C

C STEP
300 ISTEPi ISTEP1+1
C CALL TimEt39.16MLAr BEGINS STEP1)

Irc/STEO.GT.500) GO TO 603
ISTEPrLW0

3.03. IFLAGo
ISTEPFL /STEPFL*1
Ir(ISTEPFL.GT.P*NZER0) GO TO 600

134



C AT END OF LOOP,AT 180, IPLAG ED IF NO UNCOVERED ZEROS EXIST, AND
C =1 IF POSSIBLY UNCOVERED ZEROS EXIST. EXTRA PASSES THROUGH THIS LOOP
C APPEAR Tm PE NECESSARY TO ENSURE Nn UNCOVERED? ZEROS EXIST,

DO 180 wwi,NZERO
KK =K

ION IZERm(K)
JKs JZER0(K)
Ir((mR0wC0v(/KI+mCOLCOV(JK1),GT;0) GO TO 18n
IFLAG=.1-

MARK(K)sal
C PRINT 125,TK,JK
0125 FORMAT( wSTEP1 MAS PRIMED AN UNCOVERED ZERO AT+,2I51
C IF THERE NM STARRED ZERO IN ROW Ix, GO TO STEP 2, IF THERE IS A ZERO
C AT L, rOVER THIS ROW AND UNQOVER THE COLUMN Or L,
C REPEAT TTLL ALL ZEROS APE COVERED, THEN GO TO STEP J.

00 130 011,NZERO
IF(IZER0(0.NEIK) GO TO 130
IF(L.EC.g) GO TO 130
IF(mARK(L).NE.1) GO TO 130
GO TO 15n

130 CONTINUE
C PRINT 1Mc
C135 FORmAT(*STEP 1 FOUND NO STARRED ZERO IN THIS ROW,wFNT TO STEP 2.)

GO TO PO^
150 IBIZERm(L)

Jill6IZERm(l. )

C PRINT 155,I,J
C155 FORmAT(*STEP 1 FOUND STARRED ZERO TN ROW, AT =, 211)

mROHCOV(I)1
mCOLCOvru)=0
IFLAG1

180 CONTINUE
IF(IFLAG) 190.190,195

190 CONTINUE
C190 PRINT 191,TSTEPFL
C19- FORMAT, +STEP 1 DONE IN*II50, PASSES, ON TO STEP 3.*)

GO To or

195 CONTINUE
C195 PRINT i96.TSTEPFL
C196 FORmAT(=STEP1 UNDONE AFTER.,I5, PASSES, RESUME,0

GO TO 161
C

C

C

C
C STEP 2, MV )01= lemUNKRES K
C LIST(J) CONTAINS THE NUMBER OF !SUB(J1)
C AT 210, STEP2 ASSUMES 7SUB(11121) EXISTS AND SEARCHES FOR ZSUB(KP1+1)
200 KR1x1
C CALL T/mF(39,16HLAP BEG/NS STEP2)

L/ST(1)= KK
210 JTEST JZERO(LIST(KP1))

DO 220 Lni,N2ERO
IF(MARK(L),NE.1) GO TO 220
IF(UZEPO(L).EQ,JTEST) Go TO 260

220 CONTINUE
C SEQUENCE WAS TERMINATED,

PR/NT 221,1(I,LIST(I),TZERO(LIST(I)),JZER0(LISTII))),ImILDKP1)
c221 FORmATiii*YER0 SEQUENCE FOR STEP 2*/(4IS),
C STAR PRIMES IN SEQUENCE, UNSTAR STARS IN SEQUENCE

135



DO 230 NKs1,10/

222
IEimARK(L/ST(N4))) 222,230,225
mAPK(LIST(NK))1
Go TO 230

225 mARK(LIsT(NK))=0
230 CONTINUE

EWASE ALL PRIMES, UNCOVER ALL ROWS, COVEN EVERY COLUMN CONTAINING

C A STARRED ZERO.
D0240 TillsN
mCOLCOV(T)s0

240 mROwCOV(/).0
NSTAR.0
DO 250 KsioNZERO
IF(mARK(K)1242,250,245

242 MARK(K) =0
GO TO 250

245 mCOLCOV(JZERO(K))xi
NSTAR NSTAR+1

250 CONTINUE
C PRINT 255.NSTAR
C255 FORmATt IIPSTFP 2 HAS TERMINATED WITH .458 *STARS*1

C PRINT :45.1( K,IZERO( K),J7EROCK),MARK(K)),KpioNZFRO)
C PRINT 125,((i,YROwOOV(I),mCSLCOV(I)),IsigNI

TE(NSTARAO,N) GO To 4(0
GO TO iOn

260 KPinKPlei
LIST(KP1)111.
ITESTs /ZERO(L)

C A PRIMED ZERO IN ROW /TEST IS GUARANTEED TO EXIST,
DO 270 ifilieN2EPO

IF(mARK(K),NE.+1) GO To 270
IF(1ZEP0(1,E0.ITEST) O0 TO 280

270 CONTINUE
GO TO 601

280 Knit, KPidd
L/ST(KPOs K
GO TO 210

C

C

C

C STEP 3
300 IF(NSTAR.EO.N) GO TO 400
C CALL TINIE(39.1AHLAP BEGINS STEPS)

C LESS THAN N INDEPENDENT STARRED ZEROS
C COMPUTE Ys THE MINIMUM UNCOVERED NUMBER, IT IS STRICTLY POSITIVE,

C ADD X TO EACH COVERED ROW. SUBTRACT X FROM EACH UNCOVERED COLUMN.

C PRINT x20,NZERO
C320 FORMATt*STEP 3 BEGINS W/TNsi I5p *ZEROS. I
C PRINT 325.((/.MROWCOV(I),MCOLCOV(n)i31oN)
C325 FORMATt*COVER PRINTOUT*/(3If))

Xle 1.0E4,100

DO 351 TioN
Ir(mPOwc0V(/)E0, 1) GO TO 351
DO 350 jnieN
IP(MCO(,COV(J).E0.1) GO TO 3f0
XNAM/Ni (X,C(I.0)

350 CONTINUE
331 CONTINUE
C PRINT 36081(
C360 FORMAT( *STEP 3 SUBTRACTS*, E20414)

136



IF(X.LF.r1,) PRINT 370
FORMAT(p/OTEP 3 ERROR. MINIMUM UNCOVERED ELEMENT NON.POSITIVE *)

IF (X.LE.0,) GO TO 602
DO 380 /21,N
IF(MPOWCOY(I),E090) GO TO 380
SUR2 SUB -(
DO 375 JsioN

375 CII,J1, C(T,J)*X
380 CONTINUE

DO 390 Ji,N
IF(MCOLCOV(J).E0,1) GO TO 390
SUB= S!.18.0(

DO 385
385 C(I,J) s OCI,J)4(
390 CONTINUE
C DETETE THE ZEROS WHICH BECAME POSITIVE. TMESE AWE PRECISELY THE

C TWICE0CoVERED ZEROS
Kso

3900 Kosid.

3901 IF(K,GT.N/EWO) GO TO 3920
Irt(mR0Ro0V(IZER0(w))+mOOLCOV(JZERO(K))), NE.2) GO TO 3900

C PRINT 3905DIZEROMDJZFROW
C3905 FORMAT', STEP DELETES ZERO AT *, 215)

C DELETE K.TH ZECO, POTTNG LAST ZERO IN THIS SLOT.
IP(K.E0,NZERO) GO TO 300
mARK(K)1, MARK(NZERO)
mARK(NZERO)0
IZERO(Mfm IZERO(NZERO)
IZERO(N7ERO)s0
JZEROCk's JZERO(NZERO)
JZERO(N7ERO)110
NZEROmm7FR0.1
GO TO M9n1

6910 mARK(NZER0)110
IZERO(N7ER0)110
JZERO(N7r.R0)80
NZEROi NZEROwi

3920 CONTINUE
C ADD ANY NEW ZEROS TO LIST, THESE CAN ONLY PE IN THE UNCOVERED AREA.

C SINCE ALL ZEROS ON LIST ARE COVERED.
DO 395 IsieN
IF(PRORcOV(I).E0,1) GO TO 395
DO 394 juleN
IF(MOOLOOVIJ).E0,i) GO TO 394
IINC(I,j)1 392,393.394

392 C(IeJ)00.
PRINT 26,I,J

393 NIEROPN7ERO*1
IZEROINZERO),I
JZERO(NZERO's J
MARK(NZEPO) u,0

394 CONTINUE
395 CONTINUE
C PRINT 396 ,NZERO
C396 FORMAT( *STEP 3 DONE. *AZ,/ *ZEROS IN MATRIX. *)

C. PRINT 1,(iti,J,C(I*J)),Jm1sflOpIsioN)
C PRINT N5e(tKeIZER0(10,JZEROMDMARS(K)I.M0NZERO)

PRINT 3250(I.PROWCOV(4)MCOLGOVIT)),/slohl
GO TO 101

C

137



C

C

C

C DONE , N STARS EXIST,
400 08N1 SUR

DO 410 K*1,N
410 IPERMOT(K160

DO 420 Ks1,NZERO
Ir(MARK(K),NE,11 GO TO 420
IPERMOTMERDOW*JZER001)

420 CONTINUE
PRINT 43ns

C430 FORMAT(*LAP
OBJ

SUCcESSFUL. OBJECTIVE *41E20 I6//* OPTIMAL PLACE FOH
C 1I *)
C PRINT 440. ( TIPERMOT (I) )
0640 7ORMAT(2T51
C PRINT 1 ;(1(1,J0111"8141ia1")Woo

PETURN
C

C
C ERROR MESSAGES
600 IERRORs IERROR+1
601 IERRORs IERROR*i
602 IERRORs /ERROR*1
603 /ERROR* TERROR*1
604 IERRORs IERRoR*1

PRINT 420 tEamnR
620 FORMAT(*LAP ERROR OF TYPE* .15)

LAP*1
RETURN
END
END

138



APPENDIX G

DISCUSSION OF MEASURES OF EFFECTIVENESS

139



OF,

DISCUSSION OF MEASURES OF EFFECTIVENESS

A. RELATIONSHIP BETWEEN PLEASING PATTERNS AND MEASURES OF

EFFECTIVENESS

The ultimate goal of any data-organizing algorithm is the discovery of an informative

pattern of variable relationships, as evidenced by a pleasing matrix appearance.

Quantitative measures of effectiveness are used as surrogates for pleasing patterns, since

the latter concept is an intuitive one not easily described in words. The two MEs used in this

report, the summed bond energies and the summed moments of inertia, were chosen with the

hope that they would produce pleasing patterns by creating dense blocks of numbers. No

doubt other MEs can be devised for this purpose; the two proposed here are useful because

they are both (1) amenable to simple algorithms for approximate optimization and (2)

successful at producing informative patterns. Any other useful ME must share these two

properties.

The algorithms used for optimization of these two MEs (the sequential selection

algorithm for the bond energy ME, and the gradient algorithm for the moment of inertia ME)

are suboptimal, that is, they do not rigorously optimize their respective MEs. Neither

algorithm should be faulted for producing suboptimal solutions, because the ultimate goal is

producing informative patterns, not rigorously optimizing the ME; the ME is merely a

surrogate for measuring the pleasingness of a pattern. Indeed, the satisfaction with the two

algorithms is based upon their producing data orderings which are informative.

It often happens that several appealing data arrangements exist, all with approximately

the same ME (namely, near the optimum), and all very similar.

Consequently, ties or near-ties among the ME can oniy be broken by a subjective

eyeball judgment as to which data arrangement is most pleasing. Until the eyeball judgment is

made, the tying and near-tying configurations must be considered equally aceptable. For

example, the five solutions in Table 2, or the ford. solution matrices in Figure 30, and the two

141



solutions in Figure 28 must be considered equally acceptable. It is highly arbitrary to choose
one over the others on the basis of the numerical value of the ME.

In short, the ME is useful only for the first-order task of locating a handful of good
arrangements. The ME is not useful, except in an arbitrary way, for the second-order task of
choosing among the good (and nearly equally pleasing) arrangements.

B. GENERALIZATION OF THE BOND ENERGY ME

The bond energy ME can be generalized to include bonds between matrix elements
which are not nearest neighbors. For example, a ME which weights the bonds according to the
inverse square of the distance between the matrix elements (so-called gravity model) would be

aii ars
ME = E E

ij rs
+ s)2

It may be conjectured that such generalized MEs, when optimized over all row and
column permutations, are more successful at producing tightly clumped matrix elements than
the ME used for the Bond Energy Algorithm, which involved only nearest neighbor bonds.
There are two objections to the generalized ME, however. One is the significantly greater
computational difficulty in optimizing the ME over all row and column permutations. Once
the nearest neighbor feature is abandoned, the sequential selection procedure described in
Appendix D cannot be used.' Even nore serious is the fact that when diagonal bonds are
included in the ME, it is no longer possible to optimize the ME in two passes, one which
optimizes the row order, the other optimizing the column order. Instead, one would probably
have to iterate, as in the moment ordering algorithm, between row rearrangements and column
rearrangements.

The second objection to a generalized ME which includes diagonal bonds is that, for
sparse matrices, optimization of the ME may result in numerous bonds being attached to the
large matrix elements, thereby actually destroying the pleasing pattern, An example of this
phenomenon is given by the case

1 0 1 0 I

d= 1 1 0 = 0 500 0

0 0 500 1 0 1

Note that row and column permutations can transform d1 into d. Since d is in block form, it

conveys more information about the group structure and is preferable to d1. However, if any

1. This procedure can be modified, however, if the generalized ME includes only row-bonds and column-bonds (albeit
not necessarily nearest neighbor), and lacks diagonal bonds.

142



B

of the three following MEs (which allow next-to-nearest neighbor diagonal bonds) are used,

then di is preferable to d. Evidently optimization of the bond energies leads to the attachment

of as many (diagonal) bonds to the "500" as possible, even at the expense of block form. By

contrast, when the diagonal bonds are excluded, optimization of the ME will produce block

form if this is possible. (See Appendix B.)

The three MEs are

MEi (b) = E Sij aij
ij

ME2 (b) = E a.. a..

ME3 (b) = E aij
1)

Pij

6..
1 b.. > 0

where 814
00..=b

= a. + + a + + a.
1,3 1,.1" 1+ 1,.1

+ 1 /2[ai +l,j +1 + + + ai_

I3ij = 8i,j + 1 +8i,j- 1 + 8i+ 1,j + 8i-1,j

+ 1/2, [8i+1,j÷1 + Sin J-1 + 61_1 j+1 + 8 Li_ 1]

If any of the three are used, then d1 has a higher ME than d:

MEi (d) = 510
ME2 (d) = 510
ME3 (d) = 260.5

MEi (d1) = 1002

ME2 (di ) = 2000
ME3 (di) = 1002

C. ADDITIONAL PROPERTIES OF THE MEs

(1) All three algorithms are unaffected if all the matrix elements are

multiplied by a positive constant.

143



(2) All three algorithms are affected if a constant is added to the matrix
element. In particular this implies sensitivity to the choice of origin of
the ordinal scale (e.g., 0,1,2 versus 1,2,3) when rankings are used as the
matrix elements.

(3) The sensitivity of the Bond Energy Algorithm to the choice of k
depends on the relative magnitudes of the various matrix elements. If
all the matrix elements are 0 or 1, then the ME is independent of the
choice of k. If, however, the matrix elements vary greatly in magnitude,
it is recommended that k be set equal to 2 instead of 1. This choice
preserves scale by not overemphasizing the largest elements. For
example, with k = 2, the bond strength between elements of sizes 5 and
7 will be the 35, close to their average, rather than the inflated value
35 when k = 1.



APPENDIX H

A MEASURE OF EFFECTIVENESS

FOR THE MOMENT ORDERING ALGORITHM

145



A MEASURE OF EFFECTIVENESS

FOR TH6 MOMENT ORDERING ALGORITHM.

It has been pointed out that one of the properties of the algorithm is to drive the array

being operated upon toward a more diagonal form. This property has been utilized to define'

a correlation coefficient, R, to measure the progress of the iterative procedure and the quality

of the final result. The coefficient has been defined as follows:
Sxy

where

S Sx y

S2 1

x

M

T - 1 i

S2 =

SXy

1

T - 1

1

T - 1

N

= 1
a..

1
i =

aij
1 j = 1

M N

M N

i = 1 j = 1

M N

i = 1 j = 1

M N

i= 1 j=
a..

alb (Xi - 3c) (Yi -V)

aij .. X.

aij
Y.

Xi = i/M

Y. = j/N

ajj = element in ith column and jth row.

1. Suggestion due to Dr. Philip Gould of IDA.

147



Note that R is normalized so that its value always lies between zero and one. For the special
case of a square matrix R=1 cc rresponds to only the main diagonal being filled, R=0 to a
random distribution of value throughout the array, and R= -1 to the opposite diagonal only
being filled. Initial values of R for arrays therefore are generally near zero, and as the algorithm
proceeds toward a solution, R generally increases. The final value of R is a measure of the
degree of ci;Lagonality obtained by the algorithm. It should be noted however, that the
algorithm is not a direct attempt to maximize R, and that there are occasional cases in which
an iteration of the algorithm will decrease R instead of increasing it.

148



APPENDIX I

MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM

FOR A SAMPLE 3 x 3 ARRAY

149



4 ,

MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM

FOR A SAMPLE 3 x 3 ARRAY.

In order to investigate the factors which lead to multiple solutions to the Moment

Ordering Algorithm, the following experiment was carried out. It deals with a 3 x 3 array, but

it is believed that the conclusions drawn may be useful in understanding the phenomenon for

the vastly more complicated cases of larger arrays.

1. A sample 3 x 3 array (Fig. I-1) was constructed. For simplicit , its rows were

each nomalized to 10. Two of the rows were fixed (7,2,1 and 3,5,2), while the

elements in the third were allowed to take on various values (always subject to

the normalization and the restriction that all elements be non-negative).

a 13 Y

A 7 2 1

B 3 5 2

C X Y Z
11-13-69-4

FIGURE 1-1. Experimental 3x3 Array

2. For every possible combination of values for the elements of the third row, the

resulting array was analyzed. In particular, the number of possible stable

solutions was determined.

3. The results are presented in Fig. 1-2. Every point inside the triangle represents a

possible third row of the array. The values of the three elements are read

upwards from each face. (Note that the sum of the distance from any point

inside to all three faces of the equilateral triangle is constantin this case equal

to 10.) The sets of elements corresponding to the first two rows are marked as

A and B, and for each other point the multiplicity of solutions to the resulting

array is shown.

4. The resulting overall pattern indicates that when the third point is colinear, or

nearly so, with points A and B (that is, when the three rows are in a

151



------------- = ----1---_Ti

A ISI - I.. i S S S S

S -S S S S S

I S SI! A

S1 .- SI I I S

I S - I S . I- ii.

,. S,IiiIi . S fl i II II 'iii . Ii

I

I

S S 1 S S A


